Optimization of Green Concrete Containing Fly Ash and Rice Husk Ash Based on Hydro-Mechanical Properties and Life Cycle Assessment Considerations
Abstract
Doi: 10.28991/CEJ-2022-08-12-018
Full Text: PDF
Keywords
References
Kamiya, K., Oka, A., Nasu, H., & Hashimoto, T. (2000). Comparative study of structure of silica gels from different sources. Journal of Sol-Gel Science and Technology, 19(1–3), 495–499. doi:10.1023/A:1008720118475.
Maraghechi, H., Avet, F., Wong, H., Kamyab, H., & Scrivener, K. (2018). Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport. Materials and Structures/Materiaux et Constructions, 51(5), 125. doi:10.1617/s11527-018-1255-3.
Pillai, R. G., Gettu, R., Santhanam, M., Rengaraju, S., Dhandapani, Y., Rathnarajan, S., & Basavaraj, A. S. (2019). Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cement and Concrete Research, 118, 111–119. doi:10.1016/j.cemconres.2018.11.019.
Danner, T., Norden, G., & Justnes, H. (2018). Characterisation of calcined raw clays suitable as supplementary cementitious materials. Applied Clay Science, 162, 391–402. doi:10.1016/j.clay.2018.06.030.
Yang, X., Teng, F., & Wang, G. (2013). Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China. Applied Energy, 112, 1446–1453. doi:10.1016/j.apenergy.2013.03.040.
Li, C., Nie, Z., Cui, S., Gong, X., Wang, Z., & Meng, X. (2014). The life cycle inventory study of cement manufacture in China. Journal of Cleaner Production, 72, 204–211. doi:10.1016/j.jclepro.2014.02.048.
Oh, D. Y., Noguchi, T., Kitagaki, R., & Park, W. J. (2014). CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renewable and Sustainable Energy Reviews, 38, 796–810. doi:10.1016/j.rser.2014.07.036.
Saeli, M., Novais, R. M., Seabra, M. P., & Labrincha, J. A. (2018). Green geopolymeric concrete using grits for applications in construction. Materials Letters, 233, 94–97. doi:10.1016/j.matlet.2018.08.102.
Thomas, B. S., & Chandra Gupta, R. (2016). Properties of high strength concrete containing scrap tire rubber. Journal of Cleaner Production, 113, 86–92. doi:10.1016/j.jclepro.2015.11.019.
Thomas, B. S., & Gupta, R. C. (2015). Long term behaviour of cement concrete containing discarded tire rubber. Journal of Cleaner Production, 102, 78–87. doi:10.1016/j.jclepro.2015.04.072.
Siddique, R., Singh, K., Kunal, P., Singh, M., Corinaldesi, V., & Rajor, A. (2016). Properties of bacterial rice husk ash concrete. Construction and Building Materials, 121, 112–119. doi:10.1016/j.conbuildmat.2016.05.146.
Kumar, S., Gupta, R. C., Shrivastava, S., Csetenyi, L., & Thomas, B. S. (2016). Preliminary study on the use of quartz sandstone as a partial replacement of coarse aggregate in concrete based on clay content, morphology and compressive strength of combined gradation. Construction and Building Materials, 107, 103–108. doi:10.1016/j.conbuildmat.2016.01.004.
Mehra, P., Gupta, R. C., & Thomas, B. S. (2016). Properties of concrete containing jarosite as a partial substitute for fine aggregate. Journal of Cleaner Production, 120, 241–248. doi:10.1016/j.jclepro.2016.01.015.
Mehra, P., Gupta, R. C., & Thomas, B. S. (2016). Assessment of durability characteristics of cement concrete containing jarosite. Journal of Cleaner Production, 119, 59–65. doi:10.1016/j.jclepro.2016.01.055.
Thomas, B. S., Damare, A., & Gupta, R. C. (2013). Strength and durability characteristics of copper tailing concrete. Construction and Building Materials, 48, 894–900. doi:10.1016/j.conbuildmat.2013.07.075.
Thomas, B. S., Gupta, R. C., & Panicker, V. J. (2016). Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. Journal of Cleaner Production, 112, 504–513. doi:10.1016/j.jclepro.2015.08.046.
Pradhan, S., Chang Boon Poh, A., & Qian, S. (2022). Impact of service life and system boundaries on life cycle assessment of sustainable concrete mixes. Journal of Cleaner Production, 342, 130847. doi:10.1016/j.jclepro.2022.130847.
Valipour, M., Shekarchi, M., & Arezoumandi, M. (2017). Chlorine diffusion resistivity of sustainable green concrete in harsh marine environments. Journal of Cleaner Production, 142, 4092–4100. doi:10.1016/j.jclepro.2016.10.015.
Al-Khalaf, M. N., & Yousif, H. A. (1984). Use of rice husk ash in concrete. International Journal of Cement Composites and Lightweight Concrete, 6(4), 241–248. doi:10.1016/0262-5075(84)90019-8.
James, J., & Subba Rao, M. (1986). Reactivity of rice husk ash. Cement and Concrete Research, 16(3), 296–302. doi:10.1016/0008-8846(86)90104-3.
Saraswathy, V., & Song, H. W. (2007). Corrosion performance of rice husk ash blended concrete. Construction and Building Materials, 21(8), 1779–1784. doi:10.1016/j.conbuildmat.2006.05.037.
Thomas, B. S., Gupta, R. C., Mehra, P., & Kumar, S. (2015). Performance of high strength rubberized concrete in aggressive environment. Construction and Building Materials, 83, 320–326. doi:10.1016/j.conbuildmat.2015.03.012.
Thomas, B. S., Gupta, R. C., & John Panicker, V. (2015). Experimental and modelling studies on high strength concrete containing waste tire rubber. Sustainable Cities and Society, 19, 68–73. doi:10.1016/j.scs.2015.07.013.
Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888. doi:10.1016/j.conbuildmat.2012.11.054.
Wang, Y., Tan, Y., Wang, Y., & Liu, C. (2020). Mechanical properties and chloride permeability of green concrete mixed with fly ash and coal gangue. Construction and Building Materials, 233, 117166. doi:10.1016/j.conbuildmat.2019.117166.
Tkaczewska, E. (2014). Effect of the superplasticizer type on the properties of the fly ash blended cement. Construction and Building Materials, 70, 388–393. doi:10.1016/j.conbuildmat.2014.07.096.
Shehab, H. K., Eisa, A. S., & Wahba, A. M. (2016). Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Construction and Building Materials, 126, 560–565. doi:10.1016/j.conbuildmat.2016.09.059.
Khodair, Y., & Raza, M. (2017). Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials. Construction and Building Materials, 131, 245–253. doi:10.1016/j.conbuildmat.2016.11.044.
Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Construction and Building Materials, 24(11), 2145–2150. doi:10.1016/j.conbuildmat.2010.04.045.
Gursel, A. P., Maryman, H., & Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. Journal of Cleaner Production, 112, 823–836. doi:10.1016/j.jclepro.2015.06.029.
Mazlum, F., & Uyan, M. (1992). Strength of Mortar Made with Cement Containing Rice Husk Ash and Cured in Sodium Sulfate Solution. Special Publication, 132, 513-532.
Mehta, P. K. (1986). Concrete. Structure, properties and materials. Prentice Hall, Hoboken, United States.
Zhang, M. H., & Malhotra, V. M. (1996). High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Materials Journal, 93(6), 629–636. doi:10.14359/9870.
McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010.
Amin, M., & Abdelsalam, B. A. (2019). Efficiency of rice husk ash and fly ash as reactivity materials in sustainable concrete. Sustainable Environment Research, 29(1), 1-10. doi:10.1186/s42834-019-0035-2.
Mater, Y., Kamel, M., Karam, A., & Bakhoum, E. (2022). ANN-Python prediction model for the compressive strength of green concrete. Construction Innovation. doi:10.1108/CI-08-2021-0145.
Naseri, H., Jahanbakhsh, H., Khezri, K., & Shirzadi Javid, A. A. (2022). Toward sustainability in optimizing the fly ash concrete mixture ingredients by introducing a new prediction algorithm. Environment, Development and Sustainability, 24(2), 2767–2803. doi:10.1007/s10668-021-01554-2.
Bheel, N., keerio, M. A., Kumar, A., Shahzaib, J., Ali, Z., Ali, M., & sohu, S. (2022). An Investigation on Fresh and Hardened Properties of Concrete Blended with Rice Husk Ash as Cementitious Ingredient and Coal Bottom Ash as Sand Replacement Material. Silicon, 14(2), 677–688. doi:10.1007/s12633-020-00906-3.
Patnaik, B., Buony, G., Mekuria, Z. (2022). Rice Husk Ash as a Sustainable Cementing Material for Concrete in Ethiopia. Recent Developments in Sustainable Infrastructure (ICRDSI-2020)—Structure and Construction Management. Lecture Notes in Civil Engineering, 21. Springer, Singapore. doi:10.1007/978-981-16-8433-3_43.
Gursel, A. P. (2014). Life-cycle assessment of concrete: decision-support tool and case study application. PhD Thesis, University of California, Berkeley, United States.
Pradhan, S., Tiwari, B. R., Kumar, S., & Barai, S. V. (2019). Comparative LCA of recycled and natural aggregate concrete using Particle Packing Method and conventional method of design mix. Journal of Cleaner Production, 228, 679–691. doi:10.1016/j.jclepro.2019.04.328.
Ehrlich, B. (2010). Reducing environmental impacts of cement and concrete. Environmental Building News, BuildingGreen, Inc. Available online: https://www.buildinggreen.com/feature/reducing-environmental-impacts-cement-and-concrete (accessed on May 2022).
Dabbaghi, F., Sadeghi-Nik, A., Ali Libre, N., & Nasrollahpour, S. (2021). Characterizing fiber reinforced concrete incorporating zeolite and metakaolin as natural pozzolans. Structures, 34, 2617–2627. doi:10.1016/j.istruc.2021.09.025.
Mousavi, M. A., Sadeghi-Nik, A., Bahari, A., Jin, C., Ahmed, R., Ozbakkaloglu, T., & de Brito, J. (2021). Strength optimization of cementitious composites reinforced by carbon nanotubes and Titania nanoparticles. Construction and Building Materials, 303(124510). doi:10.1016/j.conbuildmat.2021.124510.
Bahari, A., Sadeghi‐Nik, A., Shaikh, F. U. A., Sadeghi‐Nik, A., Cerro‐Prada, E., Mirshafiei, E., & Roodbari, M. (2022). Experimental studies on rheological, mechanical, and microstructure properties of self‐compacting concrete containing perovskite nanomaterial. Structural Concrete, 23(1), 564-578. doi:10.1002/suco.202000548.
Kafi, M. A., Sadeghi-Nik, A., Bahari, A., Sadeghi-Nik, A., & Mirshafiei, E. (2016). Microstructural Characterization and Mechanical Properties of Cementitious Mortar Containing Montmorillonite Nanoparticles. Journal of Materials in Civil Engineering, 28(12). doi:10.1061/(asce)mt.1943-5533.0001671.
Li, Y., Han, D., Wang, H., Lyu, H., & Zou, D. (2022). Carbonation curing of mortars produced with reactivated cementitious materials for CO2 sequestration. Journal of Cleaner Production, 135501. doi: 10.1016/j.jclepro.2022.135501.
Amiri, H., Azadi, S., Karimaei, M., Sadeghi, H., & Farshad Dabbaghi. (2022). Multi-objective optimization of coal waste recycling in concrete using response surface methodology. Journal of Building Engineering, 45(103472). doi:10.1016/j.jobe.2021.103472.
Rashad, A. M. (2018). Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, 170, 757–775. doi:10.1016/j.conbuildmat.2018.03.009.
Bahari, A., Berenjian, J., & Sadeghi-Nik, A. (2016). Modification of Portland cement with Nano SiC. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86(3), 323–331. doi:10.1007/s40010-015-0244-y.
Sadeghi-Nik, A., Berenjian, J., Alimohammadi, S., Lotfi-Omran, O., Sadeghi-Nik, A., & Karimaei, M. (2019). The Effect of Recycled Concrete Aggregates and Metakaolin on the Mechanical Properties of Self-Compacting Concrete Containing Nanoparticles. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 43, 503–515. doi:10.1007/s40996-018-0182-4.
Dabbaghi, F., Tanhadoust, A., Nehdi, M. L., Nasrollahpour, S., Dehestani, M., & Yousefpour, H. (2021). Life cycle assessment multi-objective optimization and deep belief network model for sustainable lightweight aggregate concrete. Journal of Cleaner Production, 318(128554). doi:10.1016/j.jclepro.2021.128554.
Sadeghi-Nik, A., Berenjian, J., Bahari, A., Safaei, A. S., & Dehestani, M. (2017). Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Construction and Building Materials, 155, 880–891. doi:10.1016/j.conbuildmat.2017.08.107.
Bahari, A., Sadeghi-Nik, A., Roodbari, M., Sadeghi-Nik, A., & Mirshafiei, E. (2018). Experimental and theoretical studies of ordinary Portland cement composites contains nano LSCO perovskite with Fokker-Planck and chemical reaction equations. Construction and Building Materials, 163, 247–255. doi:10.1016/j.conbuildmat.2017.12.073.
Dabbaghi, F., Nasrollahpour, S., Dehestani, M., & Yousefpour, H. (2022). Optimization of Concrete Mixtures Containing Lightweight Expanded Clay Aggregates Based on Mechanical, Economical, Fire-Resistance, and Environmental Considerations. Journal of Materials in Civil Engineering, 34(2). doi:10.1061/(asce)mt.1943-5533.0004083.
Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254(120147). doi:10.1016/j.jclepro.2020.120147.
Habert, G., D’Espinose De Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. Journal of Cleaner Production, 19(11), 1229–1238. doi:10.1016/j.jclepro.2011.03.012.
Dabbaghi, F., Fallahnejad, H., Nasrollahpour, S., Dehestani, M., & Yousefpour, H. (2021). Evaluation of fracture energy, toughness, brittleness, and fracture process zone properties for lightweight concrete exposed to high temperatures. Theoretical and Applied Fracture Mechanics, 116(103088). doi:10.1016/j.tafmec.2021.103088.
Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115–125. doi:10.1016/j.conbuildmat.2019.03.078.
Juenger, M. C. G., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research, 78, 71–80. doi:10.1016/j.cemconres.2015.03.018.
Rashidi, M., Joshaghani, A., & Ghodrat, M. (2020). Towards eco-flowable concrete production. Sustainability (Switzerland), 12(3), 1–17. doi:10.3390/su12031208.
Dabbaghi, F., Dehestani, M., Yousefpour, H., Rasekh, H., & Navaratnam, S. (2021). Residual compressive stress–strain relationship of lightweight aggregate concrete after exposure to elevated temperatures. Construction and Building Materials, 298(123890). doi:10.1016/j.conbuildmat.2021.123890.
Amin, M. N., Iqtidar, A., Khan, K., Javed, M. F., Shalabi, F. I., & Qadir, M. G. (2021). Comparison of machine learning approaches with traditional methods for predicting the compressive strength of rice husk ash concrete. Crystals, 11(7). doi:10.3390/cryst11070779.
Bui, D. D., Hu, J., & Stroeven, P. (2005). Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cement and Concrete Composites, 27(3), 357–366. doi:10.1016/j.cemconcomp.2004.05.002.
Fan, K., Li, D., Damrongwiriyanupap, N., & Li, L. yuan. (2019). Compressive stress-strain relationship for fly ash concrete under thermal steady state. Cement and Concrete Composites, 104(103371). doi:10.1016/j.cemconcomp.2019.103371.
Naik, T. R. (2008). Sustainability of Concrete Construction. Practice Periodical on Structural Design and Construction, 13(2), 98–103. doi:10.1061/(asce)1084-0680(2008)13:2(98).
Mathew, G., & Joseph, B. (2018). Flexural behaviour of geopolymer concrete beams exposed to elevated temperatures. Journal of Building Engineering, 15, 311–317. doi:10.1016/j.jobe.2017.09.009.
Adamu, M., Trabanpruek, P., Jongvivatsakul, P., Likitlersuang, S., & Iwanami, M. (2021). Mechanical performance and optimization of high-volume fly ash concrete containing plastic wastes and graphene nanoplatelets using response surface methodology. Construction and Building Materials, 308(125085). doi:10.1016/j.conbuildmat.2021.125085.
Shaikh, F. U. A., & Supit, S. W. M. (2015). Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and Building Materials, 82, 192–205. doi:10.1016/j.conbuildmat.2015.02.068.
Siddique, R. (2004). Performance characteristics of high-volume Class F fly ash concrete. Cement and Concrete Research, 34(3), 487–493. doi:10.1016/j.cemconres.2003.09.002.
Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. doi:10.1016/j.cemconres.2004.01.021.
Thomas, B. S. (2018). Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3913–3923. doi:10.1016/j.rser.2017.10.081.
Dabbaghi, F., Dehestani, M., & Yousefpour, H. (2022). Residual mechanical properties of concrete containing lightweight expanded clay aggregate (LECA) after exposure to elevated temperatures. Structural Concrete, 23(4), 2162–2184. doi:10.1002/suco.202000821.
Khan, K., Ullah, M. F., Shahzada, K., Amin, M. N., Bibi, T., Wahab, N., & Aljaafari, A. (2020). Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar. Construction and Building Materials, 258(119589). doi:10.1016/j.conbuildmat.2020.119589.
Ebid, A. M., Deifalla, A. F., & Mahdi, H. A. (2022). Evaluating Shear Strength of Light-Weight and Normal-Weight Concretes through Artificial Intelligence. Sustainability, 14(21), 14010. doi:10.3390/su142114010.
Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability (Switzerland), 9(10). doi:10.3390/su9101864.
O’Brien, K. R., Ménaché, J., & O’Moore, L. M. (2009). Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. International Journal of Life Cycle Assessment, 14(7), 621–629. doi:10.1007/s11367-009-0105-5.
AzariJafari, H., Taheri Amiri, M. J., Ashrafian, A., Rasekh, H., Barforooshi, M. J., & Berenjian, J. (2019). Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature. Journal of Cleaner Production, 223, 575–586. doi:10.1016/j.jclepro.2019.03.054.
Seto, K. E., Churchill, C. J., & Panesar, D. K. (2017). Influence of fly ash allocation approaches on the life cycle assessment of cement-based materials. Journal of Cleaner Production, 157, 65–75. doi:10.1016/j.jclepro.2017.04.093.
Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., & Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59–72. doi:10.1016/j.cemconcomp.2014.11.003.
Pitroda, J., Zala, L. B., & Umrigar, F. S. (2012). Experimental Investigations on Partial Replacement of Cement with Fly ash in design mix concrete. International Journal of Advanced Engineering Technology, 3(4), 126-129.
Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. doi:10.1016/j.serj.2017.09.001.
Giaccio, G. M., & Malhotra, V. M. (1988). Concrete incorporating high volumes of ASTM Class F fly ash. Cement, Concrete and Aggregates, 10(2), 88–95. doi:10.1520/cca10088j.
Feldman, R. F., Carette, G. G., & Malhotra, V. M. (1990). Studies on mechanics of development of physical and mechanical properties of high-volume fly ash-cement pastes. Cement and Concrete Composites, 12(4), 245–251. doi:10.1016/0958-9465(90)90003-G.
Bouzoubaâ, N., Zhang, M. H., & Malhotra, V. M. (2001). Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cement and Concrete Research, 31(10), 1393–1402. doi:10.1016/S0008-8846(01)00592-0.
Poon, C. S., Lam, L., & Wong, Y. L. (2000). Study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 30(3), 447–455. doi:10.1016/S0008-8846(99)00271-9.
Ameri, F., Shoaei, P., Bahrami, N., Vaezi, M., & Ozbakkaloglu, T. (2019). Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Construction and Building Materials, 222, 796–813. doi:10.1016/j.conbuildmat.2019.06.190.
Iqtidar, A., Khan, N. B., Kashif-ur-Rehman, S., Javed, M. F., Aslam, F., Alyousef, R., Alabduljabbar, H., & Mosavi, A. (2021). Prediction of compressive strength of rice husk ash concrete through different machine learning processes. Crystals, 11(4). doi:10.3390/cryst11040352.
Iftikhar, B., Alih, S. C., Vafaei, M., Elkotb, M. A., Shutaywi, M., Javed, M. F., Deebani, W., Khan, M. I., & Aslam, F. (2022). Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. Journal of Cleaner Production, 348(131285). doi:10.1016/j.jclepro.2022.131285.
Onyelowe, K. C., Ebid, A. M., Mahdi, H. A., Riofrio, A., Eidgahee, D. R., Baykara, H., Soleymani, A., Kontoni, D.-P. N., Shakeri, J., & Jahangir, H. (2022). Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment. Civil Engineering Journal, 8(11), 2391–2410. doi:10.28991/cej-2022-08-11-03.
Onyelowe, K. C., Ebid, A. M., Riofrio, A., Soleymani, A., Baykara, H., Kontoni, D. P. N., Mahdi, H. A., & Jahangir, H. (2022). Global warming potential-based life cycle assessment and optimization of the compressive strength of fly ash-silica fume concrete; environmental impact consideration. Frontiers in Built Environment, 8(992552). doi:10.3389/fbuil.2022.992552.
Dao, P.-L., Bui, V.-D., Onyelowe, K. C., Ebid, A. M., Le, V. D., & Ahaneku, I. E. (2022). Effect of metakaolin on the mechanical properties of lateritic soil. Geotechnical Research, 9(4), 211–218. doi:10.1680/jgere.22.00046.
Onyelowe, K. C., Ebid, A. M., Mahdi, H. A., Soleymani, A., Jayabalan, J., Jahangir, H., Samui, P., & Singh, R. P. (2022). Modeling the confined compressive strength of CFRP-jacketed noncircular concrete columns using artificial intelligence techniques. Cogent Engineering, 9(1). doi:10.1080/23311916.2022.2122156.
Onyelowe, K. C., Gnananandarao, T., Ebid, A. M., Mahdi, H. A., Razzaghian Ghadikolaee, M., & Al-Ajamee, M. (2022). Evaluating the Compressive Strength of Recycled Aggregate Concrete Using Novel Artificial Neural Network. Civil Engineering Journal (Iran), 8(8), 1679–1693. doi:10.28991/CEJ-2022-08-08-011.
Onyelowe, K. C., Ebid, A. M., Riofrio, A., Baykara, H., Soleymani, A., Mahdi, H. A., Jahangir, H., & Ibe, K. (2022). Multi-Objective Prediction of the Mechanical Properties and Environmental Impact Appraisals of Self-Healing Concrete for Sustainable Structures. Sustainability (Switzerland), 14(15). doi:10.3390/su14159573.
Onyelowe, K. C., Kontoni, D. P. N., Ebid, A. M., Dabbaghi, F., Soleymani, A., Jahangir, H., & Nehdi, M. L. (2022). Multi-Objective Optimization of Sustainable Concrete Containing Fly Ash Based on Environmental and Mechanical Considerations. Buildings, 12(7), 948. doi:10.3390/buildings12070948.
DOI: 10.28991/CEJ-2022-08-12-018
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Kennedy C. ONYELOWE, Ahmed M. Ebid, Hisham A. MADHI, Atefeh SOLEYMANI, Hashem JAHANGIR, Farshad DABBAGHI
This work is licensed under a Creative Commons Attribution 4.0 International License.