Optimization of Green Concrete Containing Fly Ash and Rice Husk Ash Based on Hydro-Mechanical Properties and Life Cycle Assessment Considerations

Kennedy C. Onyelowe, Ahmed M. Ebid, Hisham A. Mahdi, Atefeh Soleymani, Hashem Jahangir, Farshad Dabbaghi

Abstract


The development of sustainable concrete in achieving the developmental goals of the United Nations in terms of sustainable infrastructure and innovative technology forms part of the focus of this research paper. In order to move towards sustainability, the utilization of the by-products of agro-industrial operations, which are fly ash (FA) and rice husk ash (RHA), in the production of concrete has been studied. Considering the environmental impact of concrete constituents, multiple mechanical and hydraulic properties of fly ash (FA) and rice husk ash (RHA) concrete have been proposed using intelligent techniques; artificial neural network (ANN) and evolutionary polynomial regressions (EPR). Also, an intelligent mix design tool/chart for this case under study is proposed. Multiple data points of concrete materials, which were further reduced to ratios as follows; cement to binder ratio (C/B), aggregate to binder ratio (Ag/B), and plasticizer to binder ratio (PL/B) were used in this exercise. At the end of the protocol, it is observed that the constituents’ ratios are dependent on the behavior of the whole, which can be solved by using the proposed model equations and mix design charts. The models performed optimally, as none showed any performance below 80%. However, ANN, which predicted Fc03, Fc07, Fc28, Fc60, Fc90, Ft28, Ff28 & Fb28, S, Ec28 & K28, and P with an accuracy of greater than 95% each with average error of less than 9.4% each, is considered the decisive technique in predicting all the studied concrete properties, including the life cycle assessment potential of the concrete materials.

 

Doi: 10.28991/CEJ-2022-08-12-018

Full Text: PDF


Keywords


Fly Ash; Rice Husk Ash; Concrete Hydro-Mechanical Properties; Sustainable Concrete; Concrete Life Cycle Assessment.

References


Kamiya, K., Oka, A., Nasu, H., & Hashimoto, T. (2000). Comparative study of structure of silica gels from different sources. Journal of Sol-Gel Science and Technology, 19(1–3), 495–499. doi:10.1023/A:1008720118475.

Maraghechi, H., Avet, F., Wong, H., Kamyab, H., & Scrivener, K. (2018). Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport. Materials and Structures/Materiaux et Constructions, 51(5), 125. doi:10.1617/s11527-018-1255-3.

Pillai, R. G., Gettu, R., Santhanam, M., Rengaraju, S., Dhandapani, Y., Rathnarajan, S., & Basavaraj, A. S. (2019). Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cement and Concrete Research, 118, 111–119. doi:10.1016/j.cemconres.2018.11.019.

Danner, T., Norden, G., & Justnes, H. (2018). Characterisation of calcined raw clays suitable as supplementary cementitious materials. Applied Clay Science, 162, 391–402. doi:10.1016/j.clay.2018.06.030.

Yang, X., Teng, F., & Wang, G. (2013). Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China. Applied Energy, 112, 1446–1453. doi:10.1016/j.apenergy.2013.03.040.

Li, C., Nie, Z., Cui, S., Gong, X., Wang, Z., & Meng, X. (2014). The life cycle inventory study of cement manufacture in China. Journal of Cleaner Production, 72, 204–211. doi:10.1016/j.jclepro.2014.02.048.

Oh, D. Y., Noguchi, T., Kitagaki, R., & Park, W. J. (2014). CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renewable and Sustainable Energy Reviews, 38, 796–810. doi:10.1016/j.rser.2014.07.036.

Saeli, M., Novais, R. M., Seabra, M. P., & Labrincha, J. A. (2018). Green geopolymeric concrete using grits for applications in construction. Materials Letters, 233, 94–97. doi:10.1016/j.matlet.2018.08.102.

Thomas, B. S., & Chandra Gupta, R. (2016). Properties of high strength concrete containing scrap tire rubber. Journal of Cleaner Production, 113, 86–92. doi:10.1016/j.jclepro.2015.11.019.

Thomas, B. S., & Gupta, R. C. (2015). Long term behaviour of cement concrete containing discarded tire rubber. Journal of Cleaner Production, 102, 78–87. doi:10.1016/j.jclepro.2015.04.072.

Siddique, R., Singh, K., Kunal, P., Singh, M., Corinaldesi, V., & Rajor, A. (2016). Properties of bacterial rice husk ash concrete. Construction and Building Materials, 121, 112–119. doi:10.1016/j.conbuildmat.2016.05.146.

Kumar, S., Gupta, R. C., Shrivastava, S., Csetenyi, L., & Thomas, B. S. (2016). Preliminary study on the use of quartz sandstone as a partial replacement of coarse aggregate in concrete based on clay content, morphology and compressive strength of combined gradation. Construction and Building Materials, 107, 103–108. doi:10.1016/j.conbuildmat.2016.01.004.

Mehra, P., Gupta, R. C., & Thomas, B. S. (2016). Properties of concrete containing jarosite as a partial substitute for fine aggregate. Journal of Cleaner Production, 120, 241–248. doi:10.1016/j.jclepro.2016.01.015.

Mehra, P., Gupta, R. C., & Thomas, B. S. (2016). Assessment of durability characteristics of cement concrete containing jarosite. Journal of Cleaner Production, 119, 59–65. doi:10.1016/j.jclepro.2016.01.055.

Thomas, B. S., Damare, A., & Gupta, R. C. (2013). Strength and durability characteristics of copper tailing concrete. Construction and Building Materials, 48, 894–900. doi:10.1016/j.conbuildmat.2013.07.075.

Thomas, B. S., Gupta, R. C., & Panicker, V. J. (2016). Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. Journal of Cleaner Production, 112, 504–513. doi:10.1016/j.jclepro.2015.08.046.

Pradhan, S., Chang Boon Poh, A., & Qian, S. (2022). Impact of service life and system boundaries on life cycle assessment of sustainable concrete mixes. Journal of Cleaner Production, 342, 130847. doi:10.1016/j.jclepro.2022.130847.

Valipour, M., Shekarchi, M., & Arezoumandi, M. (2017). Chlorine diffusion resistivity of sustainable green concrete in harsh marine environments. Journal of Cleaner Production, 142, 4092–4100. doi:10.1016/j.jclepro.2016.10.015.

Al-Khalaf, M. N., & Yousif, H. A. (1984). Use of rice husk ash in concrete. International Journal of Cement Composites and Lightweight Concrete, 6(4), 241–248. doi:10.1016/0262-5075(84)90019-8.

James, J., & Subba Rao, M. (1986). Reactivity of rice husk ash. Cement and Concrete Research, 16(3), 296–302. doi:10.1016/0008-8846(86)90104-3.

Saraswathy, V., & Song, H. W. (2007). Corrosion performance of rice husk ash blended concrete. Construction and Building Materials, 21(8), 1779–1784. doi:10.1016/j.conbuildmat.2006.05.037.

Thomas, B. S., Gupta, R. C., Mehra, P., & Kumar, S. (2015). Performance of high strength rubberized concrete in aggressive environment. Construction and Building Materials, 83, 320–326. doi:10.1016/j.conbuildmat.2015.03.012.

Thomas, B. S., Gupta, R. C., & John Panicker, V. (2015). Experimental and modelling studies on high strength concrete containing waste tire rubber. Sustainable Cities and Society, 19, 68–73. doi:10.1016/j.scs.2015.07.013.

Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888. doi:10.1016/j.conbuildmat.2012.11.054.

Wang, Y., Tan, Y., Wang, Y., & Liu, C. (2020). Mechanical properties and chloride permeability of green concrete mixed with fly ash and coal gangue. Construction and Building Materials, 233, 117166. doi:10.1016/j.conbuildmat.2019.117166.

Tkaczewska, E. (2014). Effect of the superplasticizer type on the properties of the fly ash blended cement. Construction and Building Materials, 70, 388–393. doi:10.1016/j.conbuildmat.2014.07.096.

Shehab, H. K., Eisa, A. S., & Wahba, A. M. (2016). Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Construction and Building Materials, 126, 560–565. doi:10.1016/j.conbuildmat.2016.09.059.

Khodair, Y., & Raza, M. (2017). Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials. Construction and Building Materials, 131, 245–253. doi:10.1016/j.conbuildmat.2016.11.044.

Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Construction and Building Materials, 24(11), 2145–2150. doi:10.1016/j.conbuildmat.2010.04.045.

Gursel, A. P., Maryman, H., & Ostertag, C. (2016). A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. Journal of Cleaner Production, 112, 823–836. doi:10.1016/j.jclepro.2015.06.029.

Mazlum, F., & Uyan, M. (1992). Strength of Mortar Made with Cement Containing Rice Husk Ash and Cured in Sodium Sulfate Solution. Special Publication, 132, 513-532.

Mehta, P. K. (1986). Concrete. Structure, properties and materials. Prentice Hall, Hoboken, United States.

Zhang, M. H., & Malhotra, V. M. (1996). High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Materials Journal, 93(6), 629–636. doi:10.14359/9870.

McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. doi:10.1016/j.jclepro.2011.02.010.

Amin, M., & Abdelsalam, B. A. (2019). Efficiency of rice husk ash and fly ash as reactivity materials in sustainable concrete. Sustainable Environment Research, 29(1), 1-10. doi:10.1186/s42834-019-0035-2.

Mater, Y., Kamel, M., Karam, A., & Bakhoum, E. (2022). ANN-Python prediction model for the compressive strength of green concrete. Construction Innovation. doi:10.1108/CI-08-2021-0145.

Naseri, H., Jahanbakhsh, H., Khezri, K., & Shirzadi Javid, A. A. (2022). Toward sustainability in optimizing the fly ash concrete mixture ingredients by introducing a new prediction algorithm. Environment, Development and Sustainability, 24(2), 2767–2803. doi:10.1007/s10668-021-01554-2.

Bheel, N., keerio, M. A., Kumar, A., Shahzaib, J., Ali, Z., Ali, M., & sohu, S. (2022). An Investigation on Fresh and Hardened Properties of Concrete Blended with Rice Husk Ash as Cementitious Ingredient and Coal Bottom Ash as Sand Replacement Material. Silicon, 14(2), 677–688. doi:10.1007/s12633-020-00906-3.

Patnaik, B., Buony, G., Mekuria, Z. (2022). Rice Husk Ash as a Sustainable Cementing Material for Concrete in Ethiopia. Recent Developments in Sustainable Infrastructure (ICRDSI-2020)—Structure and Construction Management. Lecture Notes in Civil Engineering, 21. Springer, Singapore. doi:10.1007/978-981-16-8433-3_43.

Gursel, A. P. (2014). Life-cycle assessment of concrete: decision-support tool and case study application. PhD Thesis, University of California, Berkeley, United States.

Pradhan, S., Tiwari, B. R., Kumar, S., & Barai, S. V. (2019). Comparative LCA of recycled and natural aggregate concrete using Particle Packing Method and conventional method of design mix. Journal of Cleaner Production, 228, 679–691. doi:10.1016/j.jclepro.2019.04.328.

Ehrlich, B. (2010). Reducing environmental impacts of cement and concrete. Environmental Building News, BuildingGreen, Inc. Available online: https://www.buildinggreen.com/feature/reducing-environmental-impacts-cement-and-concrete (accessed on May 2022).

Dabbaghi, F., Sadeghi-Nik, A., Ali Libre, N., & Nasrollahpour, S. (2021). Characterizing fiber reinforced concrete incorporating zeolite and metakaolin as natural pozzolans. Structures, 34, 2617–2627. doi:10.1016/j.istruc.2021.09.025.

Mousavi, M. A., Sadeghi-Nik, A., Bahari, A., Jin, C., Ahmed, R., Ozbakkaloglu, T., & de Brito, J. (2021). Strength optimization of cementitious composites reinforced by carbon nanotubes and Titania nanoparticles. Construction and Building Materials, 303(124510). doi:10.1016/j.conbuildmat.2021.124510.

Bahari, A., Sadeghi‐Nik, A., Shaikh, F. U. A., Sadeghi‐Nik, A., Cerro‐Prada, E., Mirshafiei, E., & Roodbari, M. (2022). Experimental studies on rheological, mechanical, and microstructure properties of self‐compacting concrete containing perovskite nanomaterial. Structural Concrete, 23(1), 564-578. doi:10.1002/suco.202000548.

Kafi, M. A., Sadeghi-Nik, A., Bahari, A., Sadeghi-Nik, A., & Mirshafiei, E. (2016). Microstructural Characterization and Mechanical Properties of Cementitious Mortar Containing Montmorillonite Nanoparticles. Journal of Materials in Civil Engineering, 28(12). doi:10.1061/(asce)mt.1943-5533.0001671.

Li, Y., Han, D., Wang, H., Lyu, H., & Zou, D. (2022). Carbonation curing of mortars produced with reactivated cementitious materials for CO2 sequestration. Journal of Cleaner Production, 135501. doi: 10.1016/j.jclepro.2022.135501.

Amiri, H., Azadi, S., Karimaei, M., Sadeghi, H., & Farshad Dabbaghi. (2022). Multi-objective optimization of coal waste recycling in concrete using response surface methodology. Journal of Building Engineering, 45(103472). doi:10.1016/j.jobe.2021.103472.

Rashad, A. M. (2018). Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, 170, 757–775. doi:10.1016/j.conbuildmat.2018.03.009.

Bahari, A., Berenjian, J., & Sadeghi-Nik, A. (2016). Modification of Portland cement with Nano SiC. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86(3), 323–331. doi:10.1007/s40010-015-0244-y.

Sadeghi-Nik, A., Berenjian, J., Alimohammadi, S., Lotfi-Omran, O., Sadeghi-Nik, A., & Karimaei, M. (2019). The Effect of Recycled Concrete Aggregates and Metakaolin on the Mechanical Properties of Self-Compacting Concrete Containing Nanoparticles. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 43, 503–515. doi:10.1007/s40996-018-0182-4.

Dabbaghi, F., Tanhadoust, A., Nehdi, M. L., Nasrollahpour, S., Dehestani, M., & Yousefpour, H. (2021). Life cycle assessment multi-objective optimization and deep belief network model for sustainable lightweight aggregate concrete. Journal of Cleaner Production, 318(128554). doi:10.1016/j.jclepro.2021.128554.

Sadeghi-Nik, A., Berenjian, J., Bahari, A., Safaei, A. S., & Dehestani, M. (2017). Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Construction and Building Materials, 155, 880–891. doi:10.1016/j.conbuildmat.2017.08.107.

Bahari, A., Sadeghi-Nik, A., Roodbari, M., Sadeghi-Nik, A., & Mirshafiei, E. (2018). Experimental and theoretical studies of ordinary Portland cement composites contains nano LSCO perovskite with Fokker-Planck and chemical reaction equations. Construction and Building Materials, 163, 247–255. doi:10.1016/j.conbuildmat.2017.12.073.

Dabbaghi, F., Nasrollahpour, S., Dehestani, M., & Yousefpour, H. (2022). Optimization of Concrete Mixtures Containing Lightweight Expanded Clay Aggregates Based on Mechanical, Economical, Fire-Resistance, and Environmental Considerations. Journal of Materials in Civil Engineering, 34(2). doi:10.1061/(asce)mt.1943-5533.0004083.

Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254(120147). doi:10.1016/j.jclepro.2020.120147.

Habert, G., D’Espinose De Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. Journal of Cleaner Production, 19(11), 1229–1238. doi:10.1016/j.jclepro.2011.03.012.

Dabbaghi, F., Fallahnejad, H., Nasrollahpour, S., Dehestani, M., & Yousefpour, H. (2021). Evaluation of fracture energy, toughness, brittleness, and fracture process zone properties for lightweight concrete exposed to high temperatures. Theoretical and Applied Fracture Mechanics, 116(103088). doi:10.1016/j.tafmec.2021.103088.

Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115–125. doi:10.1016/j.conbuildmat.2019.03.078.

Juenger, M. C. G., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research, 78, 71–80. doi:10.1016/j.cemconres.2015.03.018.

Rashidi, M., Joshaghani, A., & Ghodrat, M. (2020). Towards eco-flowable concrete production. Sustainability (Switzerland), 12(3), 1–17. doi:10.3390/su12031208.

Dabbaghi, F., Dehestani, M., Yousefpour, H., Rasekh, H., & Navaratnam, S. (2021). Residual compressive stress–strain relationship of lightweight aggregate concrete after exposure to elevated temperatures. Construction and Building Materials, 298(123890). doi:10.1016/j.conbuildmat.2021.123890.

Amin, M. N., Iqtidar, A., Khan, K., Javed, M. F., Shalabi, F. I., & Qadir, M. G. (2021). Comparison of machine learning approaches with traditional methods for predicting the compressive strength of rice husk ash concrete. Crystals, 11(7). doi:10.3390/cryst11070779.

Bui, D. D., Hu, J., & Stroeven, P. (2005). Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cement and Concrete Composites, 27(3), 357–366. doi:10.1016/j.cemconcomp.2004.05.002.

Fan, K., Li, D., Damrongwiriyanupap, N., & Li, L. yuan. (2019). Compressive stress-strain relationship for fly ash concrete under thermal steady state. Cement and Concrete Composites, 104(103371). doi:10.1016/j.cemconcomp.2019.103371.

Naik, T. R. (2008). Sustainability of Concrete Construction. Practice Periodical on Structural Design and Construction, 13(2), 98–103. doi:10.1061/(asce)1084-0680(2008)13:2(98).

Mathew, G., & Joseph, B. (2018). Flexural behaviour of geopolymer concrete beams exposed to elevated temperatures. Journal of Building Engineering, 15, 311–317. doi:10.1016/j.jobe.2017.09.009.

Adamu, M., Trabanpruek, P., Jongvivatsakul, P., Likitlersuang, S., & Iwanami, M. (2021). Mechanical performance and optimization of high-volume fly ash concrete containing plastic wastes and graphene nanoplatelets using response surface methodology. Construction and Building Materials, 308(125085). doi:10.1016/j.conbuildmat.2021.125085.

Shaikh, F. U. A., & Supit, S. W. M. (2015). Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and Building Materials, 82, 192–205. doi:10.1016/j.conbuildmat.2015.02.068.

Siddique, R. (2004). Performance characteristics of high-volume Class F fly ash concrete. Cement and Concrete Research, 34(3), 487–493. doi:10.1016/j.cemconres.2003.09.002.

Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. doi:10.1016/j.cemconres.2004.01.021.

Thomas, B. S. (2018). Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 3913–3923. doi:10.1016/j.rser.2017.10.081.

Dabbaghi, F., Dehestani, M., & Yousefpour, H. (2022). Residual mechanical properties of concrete containing lightweight expanded clay aggregate (LECA) after exposure to elevated temperatures. Structural Concrete, 23(4), 2162–2184. doi:10.1002/suco.202000821.

Khan, K., Ullah, M. F., Shahzada, K., Amin, M. N., Bibi, T., Wahab, N., & Aljaafari, A. (2020). Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar. Construction and Building Materials, 258(119589). doi:10.1016/j.conbuildmat.2020.119589.

Ebid, A. M., Deifalla, A. F., & Mahdi, H. A. (2022). Evaluating Shear Strength of Light-Weight and Normal-Weight Concretes through Artificial Intelligence. Sustainability, 14(21), 14010. doi:10.3390/su142114010.

Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability (Switzerland), 9(10). doi:10.3390/su9101864.

O’Brien, K. R., Ménaché, J., & O’Moore, L. M. (2009). Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. International Journal of Life Cycle Assessment, 14(7), 621–629. doi:10.1007/s11367-009-0105-5.

AzariJafari, H., Taheri Amiri, M. J., Ashrafian, A., Rasekh, H., Barforooshi, M. J., & Berenjian, J. (2019). Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature. Journal of Cleaner Production, 223, 575–586. doi:10.1016/j.jclepro.2019.03.054.

Seto, K. E., Churchill, C. J., & Panesar, D. K. (2017). Influence of fly ash allocation approaches on the life cycle assessment of cement-based materials. Journal of Cleaner Production, 157, 65–75. doi:10.1016/j.jclepro.2017.04.093.

Celik, K., Meral, C., Petek Gursel, A., Mehta, P. K., Horvath, A., & Monteiro, P. J. M. (2015). Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cement and Concrete Composites, 56, 59–72. doi:10.1016/j.cemconcomp.2014.11.003.

Pitroda, J., Zala, L. B., & Umrigar, F. S. (2012). Experimental Investigations on Partial Replacement of Cement with Fly ash in design mix concrete. International Journal of Advanced Engineering Technology, 3(4), 126-129.

Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. doi:10.1016/j.serj.2017.09.001.

Giaccio, G. M., & Malhotra, V. M. (1988). Concrete incorporating high volumes of ASTM Class F fly ash. Cement, Concrete and Aggregates, 10(2), 88–95. doi:10.1520/cca10088j.

Feldman, R. F., Carette, G. G., & Malhotra, V. M. (1990). Studies on mechanics of development of physical and mechanical properties of high-volume fly ash-cement pastes. Cement and Concrete Composites, 12(4), 245–251. doi:10.1016/0958-9465(90)90003-G.

Bouzoubaâ, N., Zhang, M. H., & Malhotra, V. M. (2001). Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cement and Concrete Research, 31(10), 1393–1402. doi:10.1016/S0008-8846(01)00592-0.

Poon, C. S., Lam, L., & Wong, Y. L. (2000). Study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 30(3), 447–455. doi:10.1016/S0008-8846(99)00271-9.

Ameri, F., Shoaei, P., Bahrami, N., Vaezi, M., & Ozbakkaloglu, T. (2019). Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Construction and Building Materials, 222, 796–813. doi:10.1016/j.conbuildmat.2019.06.190.

Iqtidar, A., Khan, N. B., Kashif-ur-Rehman, S., Javed, M. F., Aslam, F., Alyousef, R., Alabduljabbar, H., & Mosavi, A. (2021). Prediction of compressive strength of rice husk ash concrete through different machine learning processes. Crystals, 11(4). doi:10.3390/cryst11040352.

Iftikhar, B., Alih, S. C., Vafaei, M., Elkotb, M. A., Shutaywi, M., Javed, M. F., Deebani, W., Khan, M. I., & Aslam, F. (2022). Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. Journal of Cleaner Production, 348(131285). doi:10.1016/j.jclepro.2022.131285.

Onyelowe, K. C., Ebid, A. M., Mahdi, H. A., Riofrio, A., Eidgahee, D. R., Baykara, H., Soleymani, A., Kontoni, D.-P. N., Shakeri, J., & Jahangir, H. (2022). Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment. Civil Engineering Journal, 8(11), 2391–2410. doi:10.28991/cej-2022-08-11-03.

Onyelowe, K. C., Ebid, A. M., Riofrio, A., Soleymani, A., Baykara, H., Kontoni, D. P. N., Mahdi, H. A., & Jahangir, H. (2022). Global warming potential-based life cycle assessment and optimization of the compressive strength of fly ash-silica fume concrete; environmental impact consideration. Frontiers in Built Environment, 8(992552). doi:10.3389/fbuil.2022.992552.

Dao, P.-L., Bui, V.-D., Onyelowe, K. C., Ebid, A. M., Le, V. D., & Ahaneku, I. E. (2022). Effect of metakaolin on the mechanical properties of lateritic soil. Geotechnical Research, 9(4), 211–218. doi:10.1680/jgere.22.00046.

Onyelowe, K. C., Ebid, A. M., Mahdi, H. A., Soleymani, A., Jayabalan, J., Jahangir, H., Samui, P., & Singh, R. P. (2022). Modeling the confined compressive strength of CFRP-jacketed noncircular concrete columns using artificial intelligence techniques. Cogent Engineering, 9(1). doi:10.1080/23311916.2022.2122156.

Onyelowe, K. C., Gnananandarao, T., Ebid, A. M., Mahdi, H. A., Razzaghian Ghadikolaee, M., & Al-Ajamee, M. (2022). Evaluating the Compressive Strength of Recycled Aggregate Concrete Using Novel Artificial Neural Network. Civil Engineering Journal (Iran), 8(8), 1679–1693. doi:10.28991/CEJ-2022-08-08-011.

Onyelowe, K. C., Ebid, A. M., Riofrio, A., Baykara, H., Soleymani, A., Mahdi, H. A., Jahangir, H., & Ibe, K. (2022). Multi-Objective Prediction of the Mechanical Properties and Environmental Impact Appraisals of Self-Healing Concrete for Sustainable Structures. Sustainability (Switzerland), 14(15). doi:10.3390/su14159573.

Onyelowe, K. C., Kontoni, D. P. N., Ebid, A. M., Dabbaghi, F., Soleymani, A., Jahangir, H., & Nehdi, M. L. (2022). Multi-Objective Optimization of Sustainable Concrete Containing Fly Ash Based on Environmental and Mechanical Considerations. Buildings, 12(7), 948. doi:10.3390/buildings12070948.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-12-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Kennedy C. ONYELOWE, Ahmed M. Ebid, Hisham A. MADHI, Atefeh SOLEYMANI, Hashem JAHANGIR, Farshad DABBAGHI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message