Influence of Earthquake Parameters on the Bi-directional Behavior of Base Isolation Systems
Abstract
Doi: 10.28991/CEJ-2022-08-10-02
Full Text: PDF
Keywords
References
Seo, C. Y., Karavasilis, T. L., Ricles, J. M., & Sause, R. (2014). Seismic performance and probabilistic collapse resistance assessment of steel moment resisting frames with fluid viscous dampers. Earthquake Engineering and Structural Dynamics, 43(14), 2135–2154. doi:10.1002/eqe.2440.
Kitayama, S., & Constantinou, M. C. (2018). Seismic Performance of Buildings with Viscous Damping Systems Designed by the Procedures of ASCE/SEI 7-16. Journal of Structural Engineering, 144(6), 4018050. doi:10.1061/(asce)st.1943-541x.0002048.
Becker, T. C., & Mahin, S. A. (2012). Experimental and analytical study of the bi-directional behavior of the triple friction pendulum isolator. Earthquake Engineering and Structural Dynamics, 41(3), 355–373. doi:10.1002/eqe.1133.
Warn, G. P., & Ryan, K. L. (2012). A review of seismic isolation for buildings: Historical development and research needs. Buildings, 2(3), 300–325. doi:10.3390/buildings2030300.
Touaillon, J. (1870). Improvement in buildings. US Letters Patent, (99973), United States of Patent and Trademark, Alexandria, United States.
Constantinou, M. C., Whittaker, A. S., Kalpakidis, Y., Fenz, D. M., & Warn, G. P. (2007). Performance of seismic isolation hardware under service and seismic loading. Technical Rep. No. MCEER-07, States University of New York, New York, United States.
Symans, M. D., Cofer, W. F., & Fridley, K. J. (2002). Base isolation and supplemental damping systems for seismic protection of wood structures: Literature review. Earthquake Spectra, 18(3), 549–572. doi:10.1193/1.1503342.
Robinson, W. H. (1982). Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics, 10(4), 593–604. doi:10.1002/eqe.4290100408.
Sasaki, T., Sato, E., Ryan, K. L., Okazaki, T., Mahin, S. A., & Kajiwara, K. (2012). NEES/E-defense base-isolation tests: effectiveness of friction pendulum and lead-rubber bearing systems. Proceedings of the 15th World Conference of Earthquake Engineering, 24-28 September, 2012, Lisbon, Portugal.
Abdel Raheem, S. E., & Hayashikawa, T. (2007). Bi-directional Seismic Response Control for Bridge Structures. IABSE Reports. doi:10.2749/weimar.2007.0068.
Hashemi, S., & Aghashiri, M. H. (2017). Seismic responses of base-isolated flexible rectangular fluid containers under horizontal ground motion. Soil Dynamics and Earthquake Engineering, 100, 159–168. doi:10.1016/j.soildyn.2017.05.010.
Rawat, A., Matsagar, V. A., & Nagpal, A. K. (2019). Numerical study of base-isolated cylindrical liquid storage tanks using coupled acoustic-structural approach. Soil Dynamics and Earthquake Engineering, 119, 196–219. doi:10.1016/j.soildyn.2019.01.005.
Vern, S., Shrimali, M. K., Bharti, S. D., Datta, T. K., & Noroozinejad Farsangi, E. (2022). Seismic Control of Base-Isolated Liquid Storage Tanks Subjected to Bi-directional Strong Ground Motions. Arabian Journal for Science and Engineering, 47(4), 4511–4530. doi:10.1007/s13369-021-06171-9.
Zelleke, D. H., Saha, S. K., & Matsagar, V. A. (2020). Multihazard Response Control of Base-Isolated Buildings under Bidirectional Dynamic Excitation. Shock and Vibration, 2020, 1-24. doi:10.1155/2020/8830460.
Jing, W., Cheng, X., & Shi, W. (2018). Dynamic Responses of Sliding Isolation Concrete Rectangular Liquid Storage Structure with Limiting Devices Under Bidirectional Earthquake Actions. Arabian Journal for Science and Engineering, 43(4), 1911–1924. doi:10.1007/s13369-017-2814-6.
Robinson, W. H., & Tucker, A. G. (1977). A lead-rubber shear damper. Bulletin of the New Zealand Society for Earthquake Engineering, 10(3), 151–153. doi:10.5459/bnzsee.10.3.151-153.
Kalpakidis, I. (2015). Lead-Rubber Bearings with Emphasis on Their Implementation to Structural Design. Encyclopedia of Earthquake Engineering, 1286–1295. doi:10.1007/978-3-642-35344-4_307.
Nagarajaiah, S., Reinhorn, A. M., & Constantinou, M. C. (1991). Nonlinear dynamic analysis of 3-D-base-isolated structures. Journal of Structural Engineering, 117(7), 2035-2054. doi:10.1061/(ASCE)0733-9445(1991)117:7(2035).
Zayas, V. A., & Mahin, S. A. (1987). The FPS earthquake resisting system experimental report. Report No. UCB/EERC87/01, Earthquake Engineering Research Center, University of California, Berkeley, United States.
Keikha, H., & Ghodrati Amiri, G. (2021). Seismic Performance Assessment of Quintuple Friction Pendulum Isolator with a Focus on Frictional Behavior Impressionability from Velocity and Temperature. Journal of Earthquake Engineering, 25(7), 1256–1286. doi:10.1080/13632469.2019.1568929.
Fenz, D. M., & Constantinou, M. C. (2008). Mechanical behavior of multi-spherical sliding bearings (No. 7). Technical Report MCEER-08-0007, States University of New York, New York, United States.
Fenz, D. M., & Constantinou, M. C. (2006). Behaviour of the double concave Friction Pendulum bearing. Earthquake Engineering and Structural Dynamics, 35(11), 1403–1424. doi:10.1002/eqe.589.
Tsai, C. S., Chen, B. J., Pong, W. S., & Chiang, T. C. (2004). Interactive behavior of structures with multiple friction pendulum isolation system and unbounded foundations. Advances in Structural Engineering, 7(6), 539–550. doi:10.1260/1369433042863189.
Moeindarbari, H., & Taghikhany, T. (2014). Seismic optimum design of triple friction pendulum bearing subjected to near-fault pulse-like ground motions. Structural and Multidisciplinary Optimization, 50(4), 701–716. doi:10.1007/s00158-014-1079-x.
Fenz, D. M., & Constantinou, M. C. (2008). Modeling triple friction pendulum bearings for response-history analysis. Earthquake Spectra, 24(4), 1011–1028. doi:10.1193/1.2982531.
Fenz, D. M., & Constantinou, M. C. (2008). Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Engineering and Structural Dynamics, 37(2), 185–205. doi:10.1002/eqe.750.
Malekzadeh, M., & Taghikhany, T. (2012). Multi-stage performance of seismically isolated bridge using triple pendulum bearings. Advances in Structural Engineering, 15(7), 1181–1196. doi:10.1260/1369-4332.15.7.1181.
Morgan, T. A., & Mahin, S. A. (2010). Achieving reliable seismic performance enhancement using multi-stage friction pendulum isolators. Earthquake Engineering and Structural Dynamics, 39(13), 1443–1461. doi:10.1002/eqe.1043.
Baker, J. W. (2007). Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 1486–1501. doi:10.1785/0120060255.
Zhu, T. J., Tso, W. K., & Heidebrecht, A. C. (1988). Effect of Peak Ground a/v Ratio on Structural Damage. Journal of Structural Engineering, 114(5), 1019–1037. doi:10.1061/(asce)0733-9445(1988)114:5(1019).
ASCE/SEI 7-10. (2013). Minimum design loads for buildings and other structures. American Society of Civil Engineers, Reston, United States. doi:10.1061/9780784412916.
Applied Technology Council. (2009). Quantification of building seismic performance factors. US Department of Homeland Security, FEMA, Washington, United States.
Michaud, D., & Léger, P. (2014). Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America. Canadian Journal of Civil Engineering, 41(3), 232–244. doi:10.1139/cjce-2012-0339.
Mazza, F., & Labernarda, R. (2018). Effects of nonlinear modelling of the base-isolation system on the seismic analysis of r.c. buildings. Procedia Structural Integrity, 11, 226–233. doi:10.1016/j.prostr.2018.11.030.
Chen, Z. Y., & Liu, Z. Q. (2019). Effects of pulse-like earthquake motions on a typical subway station structure obtained in shaking-table tests. Engineering Structures, 198, 109557. doi:10.1016/j.engstruct.2019.109557.
Pant, D. R., & Wijeyewickrema, A. C. (2013). Influence of near-fault ground motions on the response of base-isolated reinforced concrete buildings considering seismic pounding. Advances in Structural Engineering, 16(12), 1973–1988. doi:10.1260/1369-4332.16.12.1973.
Rostami, A., & Poursha, M. (2021). A lateral load distribution for the static analysis of base-isolated building frames under the effect of far-fault and near-fault ground motions. Structures, 34, 2384–2405. doi:10.1016/j.istruc.2021.08.125.
Elnashai, A. S., & Di Sarno, L. (2015). Fundamentals of earthquake engineering: from source to fragility. John Wiley & Sons, Hoboken, United States.
DOI: 10.28991/CEJ-2022-08-10-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Dana Abed, Jafar Al thawabteh, Yazan Alzubi, Jamal Assbeihat, Eid Al-Sahawneh
This work is licensed under a Creative Commons Attribution 4.0 International License.