Comparison of Methods for Computing Highly Accurate Daily GNSS Positions

Sergey Kuzikov, D. V. Kenigsberg, Yuliya Salamatina, O. A. Prokhorov

Abstract


In Central Asia, the level of geodynamic displacements of the Earth's crust does not significantly exceed the accuracy of their measurement methods. Therefore, we need to choose the most accurate methods of calculating coordinates for cosmogeodetic stations. In this work, based on the data of 8 days of GPS measurements at 10 stations, 7 sets of average daily geocentric XYZ coordinates were calculated using different methods. To determine the positions, we used 3 calculation methods in the GAMIT/GLOBK program, 2 methods in the Bernese GNSS software, and 2 web services. To estimate the differences between 7 coordinate sets, we used parameters based on the Euclidean distance between these coordinate samples. The difference analysis of all pair combinations for 7 coordinate sets was carried out by 3D radius vectors, individual coordinate axes, and individual observation stations. The calculations showed that the positioning accuracy and precision depended not only on the coordinate calculation method but also on the selected reference frame. Methods using the international terrestrial reference frame (ITRF) provide station positions with regular deviations of <2 mm and individual deviations up to 5 cm. Methods using the regional and "point" reference frames have regular discrepancies for individual coordinates up to 2 cm and maximum deviations up to 1 m. Converting XYZ coordinates to UVW with the local reference frame reduces the difference between UVW sets by at least 25%. Due to the spatial orientation relative to the studied stations, the X (U) coordinate is reproduced 2-3 times with smaller deviations than other coordinates. The average deviation level of coordinate sets can be an indicator of the quality of conditions for receiving a GNSS signal at one station. We have identified the station group that has a coordinate deviation level several times lower than other stations.

 

Doi: 10.28991/CEJ-2023-09-02-04

Full Text: PDF


Keywords


GNSS Coordinate; Position Calculation Method; Reference Frame; Euclidean Distance; GNSS Data Quality.

References


Mousavi, S. M., Shamsai, A., El Naggar, M. H., & Khamehchian, M. (2001). A GPS-based monitoring program of land subsidence due to groundwater withdrawal in Iran. Canadian Journal of Civil Engineering, 28(3), 452–464. doi:10.1139/cjce-28-3-452.

Mayunga, S. D., & Bakaone, M. (2021). Dynamic Deformation Monitoring of Lotsane Bridge Using Global Positioning Systems (GPS) and Linear Variable Differential Transducers (LVDT). Journal of Data Analysis and Information Processing, 09(01), 30–50. doi:10.4236/jdaip.2021.91003.

Zubovich, A. V., Wang, X. Q., Scherba, Y. G., Schelochkov, G. G., Reilinger, R., Reigber, C., Mosienko, O. I., Molnar, P., Michajljow, W., Makarov, V. I., Li, J., Kuzikov, S. I., Herring, T. A., Hamburger, M. W., Hager, B. H., Dang, Y. M., Bragin, V. D., & Beisenbaev, R. T. (2010). GPS velocity field for the Tien Shan and surrounding regions. Tectonics, 29(6), 6014. doi:10.1029/2010TC002772.

Zhou, Y., He, J., Oimahmadov, I., Gadoev, M., Pan, Z., Wang, W., Abdulov, S., & Rajabov, N. (2016). Present-day crustal motion around the Pamir Plateau from GPS measurements. Gondwana Research, 35, 144–154. doi:10.1016/j.gr.2016.03.011.

Kuzikov, S. I., & Mukhamediev, S. A. (2010). Structure of the present-day velocity field of the crust in the area of the Central-Asian GPS network. Izvestiya, Physics of the Solid Earth, 46(7), 584–601. doi:10.1134/S1069351310070037.

Qiao, X., Yu, P., Nie, Z., Li, J., Wang, X., Kuzikov, S. I., Wang, Q., & Yang, S. (2017). The Crustal Deformation Revealed by GPS and InSAR in the Northwest Corner of the Tarim Basin, Northwestern China. Pure and Applied Geophysics, 174(3), 1405–1423. doi:10.1007/s00024-017-1473-6.

Inal, C., Bulbul, S., & Bilgen, B. (2018). Statistical analysis of accuracy and precision of GNSS receivers used in network RTK. Arabian Journal of Geosciences, 11(10), 227 1–8. doi:10.1007/s12517-018-3581-8.

Kuzikov, S. I. (2014). Methodical questions and accuracy problems of GPS observations by the example of the geodynamic proving ground in Bishkek. Izvestiya, Physics of the Solid Earth, 50(6), 770–784. doi:10.1134/S1069351314060032.

Jivall, L., Nilfouroushan, F., & Al Munaizel, N. Analysis of 20 years of GPS data from SWEREF consolidation points – using BERNESE and GAMIT-GLOBK software. Reports in Geodesy and Geographical Information Systems. Typography and layout Rainer Hertel, Gävle, Sweden, 1-84. doi:10.13140/RG.2.2.25918.97609.

Atiz, Ö. F., Konukseven, C., Öğütcü, S., & Alçay, S. (2021). Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. International Journal of Engineering and Geosciences, 7(1), 67–80. doi:10.26833/ijeg.878236.

Yatskiv, Y., Khoda, O., Ishchenko, M., & Zhalilo, O. (2021). The Research Activities of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine on the Use of GNSS Technology. Kinematics and Physics of Celestial Bodies, 37(2), 96–105. doi:10.3103/S0884591321020069.

Galaganov, O. N., Guseva, T. V., & Krupennikova, I. S. (2015). Comparison of GLONASS and GPS data by differential positioning method in static mode for solving geodynamic problems. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 12(4), 28–37.

Herring, T. A., King, R. W., Floyd, M. A., & McClusky, S. C. (2010). Introduction to GAMIT/GLOBK: Release 10.7". Massachusetts Institute of Technology.

Dach, R., Hugentobler, U., Fridez, P., & Meindl, M. (2007). Bernese GPS Software Version 5.0, Astronomical Institute. University of Bern, Bern, Switzerland. doi:10.7892/boris.72297.

Shestakov, N. V., Sysoev, D. V., Gerasimenko, M. D., Titkov, N. N., Verkhoturov, A. L., Gagarskii, N. A., Kishkina, A. K., Guojie, M., & Takahashi, H. (2019). On determination of the Earth’s surface small “instant” vertical displacements by GNSS-techniques. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 16(4), 33–44. doi:10.21046/2070-7401-2019-16-4-33-44.

Montenbruck, O., Steigenberger, P., & Hauschild, A. (2018). Multi-GNSS signal-in-space range error assessment – Methodology and results. Advances in Space Research, 61(12), 3020–3038. doi:10.1016/j.asr.2018.03.041.

Gandolfi, S., Macini, P., Poluzzi, L., & Tavasci, L. (2020). GNSS measurements for ground deformations detection around offshore natural gas fields in the Northern Adriatic Region. Proceedings of the International Association of Hydrological Sciences, 382, 89–93. doi:10.5194/piahs-382-89-2020.

Premužić, M., Đapo, A., Bačić, Ž., & Pribičević, B. (2020). Accuracy Analysis of Point Velocities Determined by Different Software Packages and GNSS Measurement Processing Methods. Tehnički Glasnik, 14(4), 446–457. doi:10.31803/tg-20200515225239.

Kenigsberg, D. V., Salamatina, Y. M., Prokhorov, O. A., & Kuzikov, S. I. (2021). Convergence of daily mean coordinates of precise positioning methods. IOP Conference Series: Earth and Environmental Science, 929(1), 12014. doi:10.1088/1755-1315/929/1/012014.

CSRS-PPP (2023). Canadian Spatial Reference System Precise Point Positioning, CSRS-PPP, Canada. Available online: https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en (accessed on January 2023).

GDGPS (2022). Jet Propulsion Laboratory. The Automatic Precise Point Service of the Global Differential GPS System, APPS. California Institute of Technology, Pasadena, United States. Available online: https://apps.gdgps.net (accessed on January 2023).

Ischuk, A., Bendick, R., Rybin, A., Molnar, P., Khan, S., Kuzikov, S., Mohadjer, S., Saydullaev, U., Ilyasova, Z., Gennady Schelochkov, G., & Zubovich, A.V. (2013). Kinematics of the Pamir and Hindu Kush regions from GPS geodesy. Journal of Geophysical Research: Solid Earth, 118, 2408–2416. doi:10.1002/jgrb.50185.

Sokal, R. R., & Michener, C. D. A. (2009). Statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin, 38(22), 1409–1438.

Odell, P. L., & Duran, B. S. (1974). Cluster Analysis. Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, Germany. doi:10.1007/978-3-642-46309-9.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Sergey Ivanovich Kuzikov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message