Destructive and Nondestructive Tests for Concrete Containing a Various Types of Fibers
Downloads
Doi: 10.28991/CEJ-2022-08-11-07
Full Text: PDF
[2] Konig, G. (1998). New concepts for high performance concrete with improved ductility. Proceedings of the 12th FIP Congress on Challenges for Concrete in the next Millennium, Netherlands, 49–53.
[3] Cui, K., Xu, L., Li, X., Hu, X., Huang, L., Deng, F., & Chi, Y. (2021). Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant-amplitude cyclic compression. Journal of Cleaner Production, 319, 128610. doi:10.1016/j.jclepro.2021.128610.
[4] Breitenbucher, R. (1996). High strength concrete C 105 with increased fiber resistance due to polypropylene fibers. 4th International Symposium on the Utilization of High Strength-High Performance Concrete, 571-577, 29-31 May, Paris, France.
[5] Kim, J. H. J., Park, C. G., Lee, S. W., Lee, S. W., & Won, J. P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39(3), 442–450. doi:10.1016/j.compositesb.2007.05.001.
[6] García Alberti, M., Picazo Iranzo, í., Enfedaque Díaz, A., & Gálvez Ruiz, J. (2019). Shear behaviour of polyolefin and steel fibre-reinforced concrete. Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, June 23-26, Bayonne, France. doi:10.21012/fc10.235614.
[7] Leone, M., Centonze, G., Colonna, D., Micelli, F., & Aiello, M. A. (2018). Fiber-reinforced concrete with low content of recycled steel fiber: Shear behaviour. Construction and Building Materials, 161, 141–155. doi:10.1016/j.conbuildmat.2017.11.101.
[8] Ning, X., Ding, Y., Zhang, F., & Zhang, Y. (2015). Experimental study and prediction model for flexural behavior of reinforced SCC beam containing steel fibers. Construction and Building Materials, 93, 644–653. doi:10.1016/j.conbuildmat.2015.06.024.
[9] Yoo, D. Y., & Moon, D. Y. (2018). Effect of steel fibers on the flexural behavior of RC beams with very low reinforcement ratios. Construction and Building Materials, 188, 237–254. doi:10.1016/j.conbuildmat.2018.08.099.
[10] Yang, I. H., Joh, C., & Kim, B. S. (2011). Flexural strength of ultra-high strength concrete beams reinforced with steel fibers. Procedia Engineering, 14, 793–796. doi:10.1016/j.proeng.2011.07.100.
[11] Hawileh, R. A., Nawaz, W., & Abdalla, J. A. (2018). Flexural behavior of reinforced concrete beams externally strengthened with Hardwire Steel-Fiber sheets. Construction and Building Materials, 172, 562–573. doi:10.1016/j.conbuildmat.2018.03.225.
[12] Ghalehnovi, M., Karimipour, A., & de Brito, J. (2019). Influence of steel fibres on the flexural performance of reinforced concrete beams with lap-spliced bars. Construction and Building Materials, 229, 116853. doi:10.1016/j.conbuildmat.2019.116853.
[13] Neeley, B. D., & O'Neil, E. F. (1996). Polyolefin fiber reinforced concrete. Proceedings of the 4th Materials Engineering Conference: Materials for the New Millennium, 113–122, 10-14 November, Washington, United States.
[14] Lin, W. T., & Cheng, A. (2013). Effect of Polyolefin Fibers and Supplementary Cementitious Materials on Corrosion Behavior of Cement-Based Composites. Journal of Inorganic and Organometallic Polymers and Materials, 23(4), 888–896. doi:10.1007/s10904-013-9866-1.
[15] Cardoso, D. C. T., Pereira, G. B. S., Silva, F. A., Silva Filho, J. J. H., & Pereira, E. V. (2019). Influence of steel fibers on the flexural behavior of RC beams with low reinforcing ratios: Analytical and experimental investigation. Composite Structures, 222, 110926. doi:10.1016/j.compstruct.2019.110926.
[16] Lashari, M. H., Memon, N. A., & Memon, M. A. (2021). Effect of using Nylon Fibers in Self Compacting Concrete (SCC). Civil Engineering Journal, 7(8), 1426-1436. doi:10.28991/cej-2021-03091734.
[17] Jassam, S. H., Qasim, O. A., & Maula, B. H. (2022). Effect of Fiber Type on High Strength Concrete Mechanical Properties. International Review of Civil Engineering, 13(2), 146–155. doi:10.15866/irece.v13i2.20868.
[18] ASTM C150/150M-15. (2016). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-15.
[19] ASTM C33-07. (2012). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033-07.
[20] ASTM C494/C494M-04. (2017). Standard Specification for Chemical Admixtures for Concrete ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-04.
[21] BS EN 12390-3:2019. (2019). Methods for Determination of Compressive Strength of Concrete Cubes. British Standard Institution (BSI), London, United Kingdom.
[22] ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
[23] ASTM C78-02. (2017). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-02.
[24] ASTM C 805-02. (2002). Standard Test Method for Rebound Number of Hardened Concrete. ASTM International, Pennsylvania, United States.
[25] ASTM C597-16. (2016). Standard Test Method for Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0597-16.
[26] Mehta, P. K., & Monteiro, P. J. (2005). Concrete: microstructure, properties, and materials (3rd Ed.). McGraw-Hill Education, New York City, United States.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
