Numerical Analysis of Settlement of a Piled Raft Foundation on Coastal Soil
Downloads
Doi: 10.28991/CEJ-2023-09-02-05
Full Text: PDF
[2] Deb, P., & Pal, S. K. (2022). Structural and geotechnical aspects of piled raft foundation through numerical analysis. Marine Georesources and Geotechnology, 40(7), 823–846. doi:10.1080/1064119X.2021.1943083.
[3] Tian, W., & Galaa, A. (2021). Plate load test on rock with soaking under a massive raft foundation. Innovative Infrastructure Solutions, 6(1), 45. doi:10.1007/s41062-020-00434-4.
[4] Amornfa, K., Quang, H. T., & Tuan, T. V. (2022). 3D numerical analysis of piled raft foundation for Ho Chi Minh City subsoil conditions. Geomechanics and Engineering, 29(2), 183–192. doi:10.12989/gae.2022.29.2.183.
[5] Ferchat, A., Benmebarek, S., & Houhou, M. N. (2021). 3D numerical analysis of piled raft interaction in drained soft clay conditions. Arabian Journal of Geosciences, 14(5). doi:10.1007/s12517-021-06783-3.
[6] Pande, G. N., & Pietruszczak, S. (2021). A critical look at constitutive models for soils. Geomechanical Modelling in Engineering Practice, 369–393, Routledge, Abingdon, United Kingdom. doi:10.1201/9780203753583-19.
[7] Knabe, T., Schweiger, H. F., & Schanz, T. (2012). Calibration of constitutive parameters by inverse analysis for a geotechnical boundary problem. Canadian Geotechnical Journal, 49(2), 170–183. doi:10.1139/t11-091.
[8] Schweiger, H. F., Fabris, C., Ausweger, G., & Hauser, L. (2019). Examples of successful numerical modelling of complex geotechnical problems. Innovative Infrastructure Solutions, 4(1), 1–10. doi:10.1007/s41062-018-0189-5.
[9] Brinkgreve, R. B. J., & Vermeer, P. A. (1998). Finite element code for soil and rock analyses. AA Balkema, Rotterdam, Netherlands.
[10] Hsiung, B. C. B., & Dao, S. D. (2014). Evaluation of constitutive soil models for predicting movements caused by a deep excavation in sands. Electronic Journal of Geotechnical Engineering, 19(Z5), 17325–17344.
[11] Phien-Wej, N., Humza, M., & Zaw Aye, Z. (2012). Numerical modeling of diaphragm wall behavior in Bangkok soil using hardening soil model. Geotechnical Aspects of Underground Construction in Soft Ground, 715–722. doi:10.1201/b12748-97.
[12] Teo, P. L., & Wong, K. S. (2012). Application of the Hardening Soil model in deep excavation analysis. IES Journal Part A: Civil & Structural Engineering, 5(3), 152–165. doi:10.1080/19373260.2012.696445.
[13] Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Waterman, D., Chesaru, A., & Bonnier, P. G. (2016). PLAXIS 2016. PLAXIS company (Plaxis bv), Netherlands.
[14] Wulandari, P. S., & Tjandra, D. (2015). Analysis of piled raft foundation on soft soil using PLAXIS 2D. Procedia Engineering, 125, 363–367. doi:10.1016/j.proeng.2015.11.083.
[15] Elwakil, A. Z., & Azzam, W. R. (2016). Experimental and numerical study of piled raft system. Alexandria Engineering Journal, 55(1), 547–560. doi:10.1016/j.aej.2015.10.001.
[16] Ryltenius, A. (2011). FEM modelling of piled raft foundations in two and three dimensions. Master Thesis, Department of Construction Sciences, Geotechnical Engineering, Lund University, Lund, Sweden.
[17] Balakumar, V., Huang, M., Oh, E., & Balasubramaniam, A. S. (2018). A critical and comparative study on 2D and 3D analyses of raft and piled raft foundations. Geotechnical Engineering, 49(1), 150–164.
[18] Algulin, J. O. E. L., & Pedersen, B. J. Ö. R. N. (2014). Modelling of a piled raft foundation as a plane strain model in PLAXIS 2D. Master Thesis, Department of Civil and Environment Engineering, Division of Geo-Engineering, Chalmers University, Göteborg, Sweden.
[19] Ukritchon, B., Faustino, J., & Keawsawasvong, S. (2016). A numerical study of load distribution of pile group foundation by 2D model. Walailak Journal of Science and Technology, 13(8), 669–688.
[20] Hong, C. Y., Lee, L. M., Ti, K. S., & Yee, W. S. (2021). A Parametric Study of Piled Raft Foundation in Clay Subjected to Concentrated Loading. International Journal of Integrated Engineering, 13(4), 263–274. doi:10.30880/ijie.2021.13.04.025.
[21] Das, B. M. (2021). Principles of geotechnical engineering. Cengage Learning, Boston, United States.
[22] Bolton, M. D. (1986). The strength and dilatancy of sands. Géotechnique, 36(1), 65–78. doi:10.1680/geot.1986.36.1.65.
[23] AASHTO. (2002). Standard specifications for highway bridges (17th Ed.). American Association of States Highway and transportation Officials, Washington, United States.
[24] Butler, F. G. (1974). Heavily over-consolidated clays. Proceedings BGS conference on settlement of structures, 531-578, Wiley, London, United Kingdom.
[25] Stroud, M. A. (1988). The standard penetration test–its application and interpretation. Conference on Penetration Testing, 6-8 July, 1988, London, United Kingdom.
[26] Rajapakse, R. (2015). Geotechnical Engineering Calculations and Rules of Thumb: Second Edition. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/c2015-0-01445-9.
[27] Wood, D. (2009). Soil Mechanics: A One-Dimensional Introduction. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/CBO9780511815553.
[28] Ou, C. Y. (2014). Deep excavation: Theory and practice. CRC Press, Boca Raton, United States. doi:10.1201/9781482288469
[29] Cashman, P. M., & Preene, M. (2020). Groundwater lowering in construction: a practical guide to dewatering. CRC Press, Boca Raton, United States. doi:10.1201/9781003050025.
[30] Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior. John Wiley & Sons, New York, United States.
[31] Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons, New York, United States.
[32] Craig, R. F. (2004). Craig's soil mechanics. CRC Press, Boca Raton, United States. doi:10.4324/9780203494103.
[33] Wagner, J. F. (2013). Mechanical properties of clays and clay minerals. Developments in clay science. Elsevier, Amsterdam, Netherlands.
[34] Hageman, J. M. (2008). Contractor's Guide to the Building Code. Craftsman Book Company, Carlsbad, United States.
[35] Ching, F. D., & Winkel, S. R. (2021). Building Codes Illustrated: A Guide to Understanding the 2021 International Building Code. John Wiley & Sons, New York, United States.
[36] Ambrose, J. (1993). Building structures. John Wiley & Sons, New York, United States.
[37] Salvadori, M. (2000). The Art of Construction: projects and principles for beginning engineers & architects. Chicago Review Press.
[38] Skempton, A. W., & Macdonald, D. H. (1956). The Allowable Settlements of Buildings. Proceedings of the Institution of Civil Engineers, 5(6), 727–768. doi:10.1680/ipeds.1956.12202.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
