Numerical Analysis of Settlement of a Piled Raft Foundation on Coastal Soil

Syed Raghib Abbas Shah, Aneel Kumar, Muhammad Auchar Zardari, Tauha Hussain Ali, Riaz Bhanbhro


There is a growing demand for multi-story buildings for residence and commercial purposes in coastal areas of Sindh, Pakistan. Such types of soils are generally considered more compressible with high groundwater levels, which may cause lower shear strength and higher settlement. The computation of the settlement of foundations requires the use of advanced constitutive models, which are not commonly used due to a lack of field or experimental data. This study is carried out to illustrate the use of an advanced soil model, i.e., Hardening Soil Model for the computation of settlement. For this purpose, numerical modeling was carried out using Finite Element Program PLAXIS 2D. Initially, the MC Model was utilized for the calculation of the settlement of a 10-story building in the coastal soil. In addition, parametric analyses for the effects of modulus of elasticity, permeability, and dilatancy angle were carried out. The results mainly suggest that the settlement of the building constructed on a piled raft foundation, predicted with the MC model, was 40% higher than that of the HS model. For prediction of settlement of the piled raft foundation, the results suggest that the HS model can be given preference as compared to the MC model.


Doi: 10.28991/CEJ-2023-09-02-05

Full Text: PDF


Settlement; Consolidation; Standard Penetration Test; Dilatancy Angle; Permeability.


Majeed, S., Zaman, S. B., Ali, I., & Ahmed, S. (2010). Situational analysis of Sindh coast-issues and options. Managing Natural Resources for Sustaining Future Agriculture, Research Briefings, 2(11), 1-23.

Deb, P., & Pal, S. K. (2022). Structural and geotechnical aspects of piled raft foundation through numerical analysis. Marine Georesources and Geotechnology, 40(7), 823–846. doi:10.1080/1064119X.2021.1943083.

Tian, W., & Galaa, A. (2021). Plate load test on rock with soaking under a massive raft foundation. Innovative Infrastructure Solutions, 6(1), 45. doi:10.1007/s41062-020-00434-4.

Amornfa, K., Quang, H. T., & Tuan, T. V. (2022). 3D numerical analysis of piled raft foundation for Ho Chi Minh City subsoil conditions. Geomechanics and Engineering, 29(2), 183–192. doi:10.12989/gae.2022.29.2.183.

Ferchat, A., Benmebarek, S., & Houhou, M. N. (2021). 3D numerical analysis of piled raft interaction in drained soft clay conditions. Arabian Journal of Geosciences, 14(5). doi:10.1007/s12517-021-06783-3.

Pande, G. N., & Pietruszczak, S. (2021). A critical look at constitutive models for soils. Geomechanical Modelling in Engineering Practice, 369–393, Routledge, Abingdon, United Kingdom. doi:10.1201/9780203753583-19.

Knabe, T., Schweiger, H. F., & Schanz, T. (2012). Calibration of constitutive parameters by inverse analysis for a geotechnical boundary problem. Canadian Geotechnical Journal, 49(2), 170–183. doi:10.1139/t11-091.

Schweiger, H. F., Fabris, C., Ausweger, G., & Hauser, L. (2019). Examples of successful numerical modelling of complex geotechnical problems. Innovative Infrastructure Solutions, 4(1), 1–10. doi:10.1007/s41062-018-0189-5.

Brinkgreve, R. B. J., & Vermeer, P. A. (1998). Finite element code for soil and rock analyses. AA Balkema, Rotterdam, Netherlands.

Hsiung, B. C. B., & Dao, S. D. (2014). Evaluation of constitutive soil models for predicting movements caused by a deep excavation in sands. Electronic Journal of Geotechnical Engineering, 19(Z5), 17325–17344.

Phien-Wej, N., Humza, M., & Zaw Aye, Z. (2012). Numerical modeling of diaphragm wall behavior in Bangkok soil using hardening soil model. Geotechnical Aspects of Underground Construction in Soft Ground, 715–722. doi:10.1201/b12748-97.

Teo, P. L., & Wong, K. S. (2012). Application of the Hardening Soil model in deep excavation analysis. IES Journal Part A: Civil & Structural Engineering, 5(3), 152–165. doi:10.1080/19373260.2012.696445.

Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Waterman, D., Chesaru, A., & Bonnier, P. G. (2016). PLAXIS 2016. PLAXIS company (Plaxis bv), Netherlands.

Wulandari, P. S., & Tjandra, D. (2015). Analysis of piled raft foundation on soft soil using PLAXIS 2D. Procedia Engineering, 125, 363–367. doi:10.1016/j.proeng.2015.11.083.

Elwakil, A. Z., & Azzam, W. R. (2016). Experimental and numerical study of piled raft system. Alexandria Engineering Journal, 55(1), 547–560. doi:10.1016/j.aej.2015.10.001.

Ryltenius, A. (2011). FEM modelling of piled raft foundations in two and three dimensions. Master Thesis, Department of Construction Sciences, Geotechnical Engineering, Lund University, Lund, Sweden.

Balakumar, V., Huang, M., Oh, E., & Balasubramaniam, A. S. (2018). A critical and comparative study on 2D and 3D analyses of raft and piled raft foundations. Geotechnical Engineering, 49(1), 150–164.

Algulin, J. O. E. L., & Pedersen, B. J. Ö. R. N. (2014). Modelling of a piled raft foundation as a plane strain model in PLAXIS 2D. Master Thesis, Department of Civil and Environment Engineering, Division of Geo-Engineering, Chalmers University, Göteborg, Sweden.

Ukritchon, B., Faustino, J., & Keawsawasvong, S. (2016). A numerical study of load distribution of pile group foundation by 2D model. Walailak Journal of Science and Technology, 13(8), 669–688.

Hong, C. Y., Lee, L. M., Ti, K. S., & Yee, W. S. (2021). A Parametric Study of Piled Raft Foundation in Clay Subjected to Concentrated Loading. International Journal of Integrated Engineering, 13(4), 263–274. doi:10.30880/ijie.2021.13.04.025.

Das, B. M. (2021). Principles of geotechnical engineering. Cengage Learning, Boston, United States.

Bolton, M. D. (1986). The strength and dilatancy of sands. Géotechnique, 36(1), 65–78. doi:10.1680/geot.1986.36.1.65.

AASHTO. (2002). Standard specifications for highway bridges (17th Ed.). American Association of States Highway and transportation Officials, Washington, United States.

Butler, F. G. (1974). Heavily over-consolidated clays. Proceedings BGS conference on settlement of structures, 531-578, Wiley, London, United Kingdom.

Stroud, M. A. (1988). The standard penetration test–its application and interpretation. Conference on Penetration Testing, 6-8 July, 1988, London, United Kingdom.

Rajapakse, R. (2015). Geotechnical Engineering Calculations and Rules of Thumb: Second Edition. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/c2015-0-01445-9.

Wood, D. (2009). Soil Mechanics: A One-Dimensional Introduction. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/CBO9780511815553.

Ou, C. Y. (2014). Deep excavation: Theory and practice. CRC Press, Boca Raton, United States. doi:10.1201/9781482288469

Cashman, P. M., & Preene, M. (2020). Groundwater lowering in construction: a practical guide to dewatering. CRC Press, Boca Raton, United States. doi:10.1201/9781003050025.

Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior. John Wiley & Sons, New York, United States.

Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons, New York, United States.

Craig, R. F. (2004). Craig’s soil mechanics. CRC Press, Boca Raton, United States. doi:10.4324/9780203494103.

Wagner, J. F. (2013). Mechanical properties of clays and clay minerals. Developments in clay science. Elsevier, Amsterdam, Netherlands.

Hageman, J. M. (2008). Contractor's Guide to the Building Code. Craftsman Book Company, Carlsbad, United States.

Ching, F. D., & Winkel, S. R. (2021). Building Codes Illustrated: A Guide to Understanding the 2021 International Building Code. John Wiley & Sons, New York, United States.

Ambrose, J. (1993). Building structures. John Wiley & Sons, New York, United States.

Salvadori, M. (2000). The Art of Construction: projects and principles for beginning engineers & architects. Chicago Review Press.

Skempton, A. W., & Macdonald, D. H. (1956). The Allowable Settlements of Buildings. Proceedings of the Institution of Civil Engineers, 5(6), 727–768. doi:10.1680/ipeds.1956.12202.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-05


  • There are currently no refbacks.

Copyright (c) 2023 Syed Raghib Abbas Shah, Aneel Kumar, Muhammad Auchar Zardari, Tauha Hussain Ali, Riaz Bhanbhro

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.