Computational Fluid Dynamics (CFD) Simulation of Mesh Jet Devices for Promising Energy-Saving Technologies
Downloads
Doi: 10.28991/CEJ-2022-08-12-06
Full Text: PDF
[2] Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of mesh turbomachinery based on the Euler turbine. Energies, 14(17), 5292. doi:10.3390/en14175292.
[3] Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Mulenko, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and study of jet systems for developing mesh turbomachines. International Review of Mechanical Engineering, 15(7), 335–345. doi:10.15866/ireme.v15i7.21163.
[4] Sazonov, Y. A., Mokhov M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, KH. A., Frankov, M. A., & Balaka, N. N. (2021). Prototyping and Research of Mesh Jet Systems. International Journal of Mechanical Engineering, 6(3), 22-42.
[5] Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2020). Prototyping mesh turbine with the jet control system. Periódico Tchíª Química, 17, 1160-1175.
[6] Sazonov, Y. A., Mokhov, M. A., & Tumanyan, KH. A. (2022). Utility model Patent No. 209663 of the Russian Federation U1, IPC F03B 5/00, Moscow, Russia.
[7] Liu, Y. P., Wang, X. S., Zhu, P., Li, G. C., Ni, X. M., & Zhang, J. (2019). Experimental study on gas jet suppressed by water mist: A clean control technique in natural gas leakage incidents. Journal of Cleaner Production, 223, 163-175. doi:10.1016/j.jclepro.2019.03.107.
[8] Rendón, M. A., Assato, M., Martins, V. A., Hallak, P. H., Altgott, A. S., Graça, R., ... & Delmonte, R. G. P. (2022). Design method and performance analysis of a hybrid-electric power-train applied in a 30-passenger aircraft. Journal of Cleaner Production, 339, 130560. doi:10.1016/j.jclepro.2022.130560.
[9] Ma, T., Wang, X., Qiao, N., Zhang, Z., Fu, J., & Bao, M. (2022). A Conceptual Design and Optimization Approach for Distributed Electric Propulsion eVTOL Aircraft Based on Ducted-Fan Wing Unit. Aerospace, 9(11), 690. doi:10.3390/aerospace9110690.
[10] Morozov, A. V., Nazarov, E. A., & Pokotilo, S. A. (2022). The patent for invention No. 2777459 of the Russian Federation. Method of creating aerodynamic forces on an aircraft wing and a device for its implementation. Moscow, Russia.
[11] Xia, J., & Zhou, Z. (2022). Model Predictive Control Based on ILQR for Tilt-Propulsion UAV. Aerospace, 9(11), 688. doi:10.3390/aerospace9110688.
[12] Wang, R., Zhang, G., Ying, P., & Ma, X. (2022). Effects of Key Parameters on Airfoil Aerodynamics Using Co-Flow Jet Active Flow Control. Aerospace, 9(11), 649. doi:10.3390/aerospace9110649.
[13] Friedmann, G. (1952). US Patent 2623474. Injection mixer. United States Patent Office, Alexandria, United States.
[14] Kalachev, V. V. (2017). Jet pumps: theory, calculation and design. Omega, Moscow, Russia.
[15] Wheatley, M. J. (1997). Apparatus for energy transfer. UK Patent Application, GB No: 2310005, London, United Kingdom.
[16] Han, J., Feng, J., Hou, T., & Peng, X. (2021). Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system. International Journal of Energy Research, 45(2), 3031–3048. doi:10.1002/er.5996.
[17] Arun Kumar, R., & Rajesh, G. (2018). Physics of vacuum generation in zero-secondary flow ejectors. Physics of Fluids, 30(6), 66102. doi:10.1063/1.5030073.
[18] Chen, W., Xue, K., Chen, H., Chong, D., & Yan, J. (2018). Experimental and Numerical Analysis on the Internal Flow of Supersonic Ejector under Different Working Modes. Heat Transfer Engineering, 39(7–8), 700–710. doi:10.1080/01457632.2017.1325686.
[19] Sri Ramya, E., Lovaraju, P., Dakshina Murthy, I., Thanigaiarasu, S., & Rathakrishnan, E. (2020). Experimental and computational investigations on flow characteristics of supersonic ejector. International Review of Aerospace Engineering, 13(1), 1–9. doi:10.15866/irease.v13i1.18108.
[20] Vojta, L., & Dvorak, V. (2019). Measurement and calculating of supersonic ejectors. EPJ Web of Conferences, 213, 02097. doi:10.1051/epjconf/201921302097.
[21] Falsafioon, M., Aidoun, Z., & Ameur, K. (2019). Numerical investigation on the effects of internal flow structure on ejector performance. Journal of Applied Fluid Mechanics, 12(6), 2003–2015. doi:10.29252/JAFM.12.06.29895.
[22] Bharate, G., & Kumar R, A. (2021). Starting transients in second throat vacuum ejectors for high altitude testing facilities. Aerospace Science and Technology, 113. doi:10.1016/j.ast.2021.106687.
[23] Skaggs, B. D. (1997). U.S. Patent No. 5,628,623: Fluid ejector and ejection method. United States Patent Office, Alexandria, United States.
[24] Dodge, A. Y. (195). U.S. Patent No. 3,188,976. Jet pump. United States Patent Office, Alexandria, United States.
[25] Samuel, L. (1968). U.S. Patent No. 3,385,030. Process for scrubbing a gas stream containing particulate material. United States Patent Office, Alexandria, United States.
[26] Asgarnejad, S., Kouhikamali, R., & Hassani, M. (2022). Triple-Nozzle Thermo-Compressor: Geometrical Investigation and Comparison with Single-Nozzle Thermo-Compressor. Journal of Applied Fluid Mechanics, 15(6), 1693–1702. doi:10.47176/jafm.15.06.1316.
[27] Bayles, W. H., & Nash, B. C. (1962). U.S. Patent No. 3,064,878: Method and apparatus for high performance evacuation system. United States Patent Office, Alexandria, United States.
[28] Volker, M., & Sausner, A. (2018). U.S. Patent No. 10,072,674: Suction jet pump. United States Patent Office, Alexandria, United States.
[29] Liu, J. F., Luo, Z. B., Deng, X., Zhao, Z. J., Li, S. Q., Liu, Q., & Zhu, Y. X. (2022). Dual Synthetic Jets Actuator and Its Applications”Part II: Novel Fluidic Thrust-Vectoring Method Based on Dual Synthetic Jets Actuator. Actuators, 11(8), 209. doi:10.3390/act11080209.
[30] Shakouchi, T., & Fukushima, S. (2022). Fluidic Thrust, Propulsion, Vector Control of Supersonic Jets by Flow Entrainment and the Coanda Effect. Energies, 15(22), 8513. doi:10.3390/en15228513.
[31] Chanut, P. L. J. (1964). U.S. Patent No. 3,013,494. Guided Missile. United States Patent Office, Alexandria, United States
[32] Sota Jr, C. G., Callis, G. J., & Masse, R. K. (2007). U.S. Patent No. 7,155,898: Thrust vector control system for a plug nozzle rocket engine. United States Patent Office, Alexandria, United States.
[33] Maré, J. C. (2021). Review and analysis of the reasons delaying the entry into service of power-by-wire actuators for high-power safety-critical applications. Actuators, 10(9), 233. doi:10.3390/act10090233.
[34] Aerospaceweb (2018). Missile Control Systems. Available online: http://www.aerospaceweb.org/question/weapons/q0158.shtml (accessed on August 2022).
[35] Abugov, D. I., & Bobylev, V. M. (1987). Theory and calculation of solid propellant rocket engines. Mechanical engineering, Moscow, Russia.
[36] Ferlauto, M., Ferrero, A., Marsicovetere, M., & Marsilio, R. (2021). Differential throttling and fluidic thrust vectoring in a linear aerospike. International Journal of Turbomachinery, Propulsion and Power, 6(2), 8. doi:10.3390/ijtpp6020008.
[37] Bailey, J. M. (1982). U.S. Patent No. 4,355,949: Control system and nozzle for impulse turbines. United States Patent Office, Alexandria, United States.
[38] Decaix, J., & Münch-Alligné, C. (2022). Geometry, Mesh and Numerical Scheme Influencing the Simulation of a Pelton Jet with the OpenFOAM Toolbox. Energies, 15(19), 7451. doi:10.3390/en15197451.
[39] Hickerson, F. R. (1965). U.S. Patent No. 3,192,714: Variable thrust rocket engine incorporating thrust vector control. United States Patent Office, Alexandria, United States.
[40] Kinsey, L. E., & Cavalleri, R. J. (2013). U.S. Patent No. 8,387,360: Integral thrust vector and roll control system. United States Patent Office, Alexandria, United States.
[41] Plumpe Jr., William, H. (2003). U. S. Patent No. 6,622,472: Apparatus and method for thrust vector control. United States Patent Office, Alexandria, United States.
[42] Liu, B., Gao, Y., Gao, L., Zhang, J., Zhu, Y., Zang, X., & Zhao, J. (2022). Design and Experimental Study of a Turbojet VTOL Aircraft with One-Dimensional Thrust Vectoring Nozzles. Aerospace, 9(11), 678. doi:10.3390/aerospace9110678.
[43] Dellali, R., & Kadja, M. (2019). Study of turbulent flow through a thrust reverser. International Review of Mechanical Engineering, 13(3), 173–184. doi:10.15866/ireme.v13i3.16306.
[44] Bhadran, A., Manathara, J. G., & Ramakrishna, P. A. (2022). Thrust Control of Lab-Scale Hybrid Rocket Motor with Wax-Aluminum Fuel and Air as Oxidizer. Aerospace, 9(9). doi:10.3390/aerospace9090474.
[45] Jing, Q., Xu, W., Ye, W., & Li, Z. (2022). The Relationship between Contraction of the Ejector Mixing Chamber and Supersonic Jet Mixing Layer Development. Aerospace, 9(9), 469. doi:10.3390/aerospace9090469.
[46] Donateo, T., Spada Chiodo, L., Ficarella, A., & Lunaro, A. (2022). Improving the Dynamic Behavior of a Hybrid Electric Rotorcraft for Urban Air Mobility. Energies, 15(20), 7598. doi:10.3390/en15207598.
[47] Sazonov, Y. A. (2012). Fundamentals of calculation and design of pump-ejector installations. SUE "Oil and Gas Publishing House” of Gubkin University: Moscow, Russia.
[48] Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A. Voronova, V. V., & Balaka, N. N. (2022). The patent for the utility model of the Russian Federation No. 214452. Jet installation, Moscow, Russian Federation.
[49] Lavrentyev, M. A., Yushkevich, A. P., & Grigoryan, A. T. (1958). Leonhard Euler. Collection of articles in honour of the 250th anniversary of his birth presented to the Academy of Sciences of USSR, Moscow, Russia.
[50] Ackeret, J. (1944). Investigation of a water turbine built according to Euler's suggestions. Schweizerische Bauzeitung, 123(1), 2. (In German).
[51] Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A., Voronova, V. V., & Balaka, N. N. (2022). The utility model patent of the RF No. 213280 Useful model patent of the Russian Federation No 213280. Jet Installation. Moscow, Russia.
[52] Baturin, O. V. (2011). Lecture notes on the educational discipline "Theory and calculation of blade machines”: a textbook. Samara University, Samara, Russia. (In Russian).
[53] Petrovich, G. P. (2002). Philosophy of technology and creativity of P. K. Engelmeyer: Historical and philosophical analysis. Ph.D. Thesis, Ural State Economic University Press, Yekaterinburg, Russia.
[54] Altshuller, G. S. (2011). To find an idea: An introduction to TRIZ - the theory of inventive problem solving. Alpina Publisher, Moscow, Russia.
[55] Oz, F., & Kara, K. (2020). Jet Oscillation Frequency Characterization of a Sweeping Jet Actuator y. Fluids, 5(2), 72. doi:10.3390/fluids5020072.
[56] Portillo, D. J., Hoffman, E., Garcia, M., LaLonde, E., Combs, C., & Hood, R. L. (2022). The Effects of Compressibility on the Performance and Modal Structures of a Sweeping Jet Emitted from Various Scales of a Fluidic Oscillator. Fluids, 7(7), 251. doi:10.3390/fluids7070251.
[57] Tomac, M. (2020). Effect of the Oscillator Length on the Characteristics of a Feedback Type Fluidic Oscillator. Academic Platform Journal of Engineering and Science, 8(3), 432–438. doi:10.21541/apjes.583500.
[58] Baghaei, M., & Bergada, J. M. (2020). Fluidic oscillators, the effect of some design modifications. Applied Sciences (Switzerland), 10(6), 2105. doi:10.3390/app10062105.
[59] Hossain, M. A., Ameri, A., Gregory, J. W., & Bons, J. P. (2020). Sweeping jet film cooling at high blowing ratio on a turbine vane. Journal of Turbomachinery, 142(12), 121010. doi:10.1115/1.4047396.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
