Development of Eco-friendly Self-compacting Concrete Using Fly Ash and Waste Polyethylene Terephthalate Bottle Fiber

Slamet Widodo, Rifki Alfirahma, Alamsyah Prawiranegara, M Fajar Amir, Aniswara Dewi


This study aims to utilize fly ash and waste PET bottles for producing more sustainable self-compacting concrete (SCC) with better mechanical strength. Fly ash is utilized as a supplementary cement material and waste PET bottles as fiber reinforcement to improve its flexural strength and achieve the targeted compressive strength. The experimental works were conducted on eight variations using 80 specimens, divided into two main groups of partial cement replacement using 0% and 15% fly ash by weight. The two variants are added with PET fiber based on the volume fractions of 0%, 0.25%, 0.50%, and 0.75%. Fresh concrete was tested using the slump flow method (T50) and the Visual Stability Index (VSI) based on ASTM 1611. The hardened concrete tests are conducted after 56 days and include testing the concrete's compressive strength, flexural strength, and ultrasonic pulse velocity. Test results showed that the presence of PET fiber in the SCC mix decreased its flowability. However, when added up to 0.75%, the mixes still meet the flowability requirements of fresh-state SCC. PET fiber addition tends to reduce the compressive strength, whereas the reduction in compressive strength of SCC with PET fiber without fly ash is insignificant. However, in SCC that uses fly ash, the addition of PET fiber causes a significant decrease in its compressive strength. Adding PET fiber into SCC mixes can increase flexural strength, both for the two variants: SCC without fly ash and SCC with fly ash. It can be concluded that PET waste fiber with an aspect ratio of 40 can be added up to 0.5% for SCC without fly ash and up to 0.25% by volume fraction for SCC with fly ash addition. The ultrasonic pulse velocity test results have an excellent tendency to predict the concrete's compressive and flexural strengths. Therefore, the UPV test can be applied for the non-destructive test evaluation of PET fiber-reinforced SCC.


Doi: 10.28991/CEJ-2023-09-02-014

Full Text: PDF


Compressive Strength; Flexural Strength; Fly Ash; Polyethylene Terephthalate; Self-Compacting; Ultrasonic Pulse Velocity.


Concha, N. C., & Baccay, M. A. (2020). Effects of mineral and chemical admixtures on the rheological properties of self-compacting concrete. International Journal of GEOMATE, 18(66), 24–29. doi:10.21660/2020.66.9138.

EFNARC. (2005). The European Guidelines for Self-Compacting Concrete Specification, Production and Use. European Federation for Specialist Construction Chemicals and Concrete Systems, Norfolk, United Kingdom.

Kheder, G. F., & Al Jadiri, R. S. (2010). New method for proportioning self-consolidating concrete based on compressive strength requirements. ACI Materials Journal, 107(5), 490–497. doi:10.14359/51663969.

Widodo, S., Ma’arif, F., Gao, Z., & Nugroho, M. S. (2022). Use of Ground Calcium Carbonate for Self-compacting Concrete Development based on Various Water Content and Binder Compositions. The Open Civil Engineering Journal, 16(1), 1–8. doi:10.2174/18741495-v16-e2208180.

Rwamamara, R., & Simonsson, P. (2012). Self-compacting concrete use for construction work environment sustainability. Journal of Civil Engineering and Management, 18(5), 724–734. doi:10.3846/13923730.2012.723399.

Murdono, F., Agustin, W., Soeprapto, G., & Sunarso, M. (2017). Advantage of using high strength self-compacting concrete for precast product. AIP Conference Proceedings, 1903, 30009. doi:10.1063/1.5011516.

Dybeł, P., & Kucharska, M. (2021). Multilayer casting of eco-efficient self-compacting concrete with reduced binder content. Materials, 14(19), 1–13. doi:10.3390/ma14195685.

Quan, H., & Kasami, H. (2018). Experimental Study on the Effects of Recycled Concrete Powder on Properties of Self-Compacting Concrete. The Open Civil Engineering Journal, 12(1), 430–440. doi:10.2174/1874149501812010430.

Shah, S. A. R., Ahmad, H., Alhazmi, H., Anwar, M. K., & Iqbal, F. (2021). Utilization of self-consolidated green material for sustainable development: An environment friendly waste materials application for circular economy. Polymers, 13(17), 2985. doi:10.3390/polym13172985.

Adesina, A., & Awoyera, P. (2019). Overview of trends in the application of waste materials in self-compacting concrete production. SN Applied Sciences, 1(9), 962. doi:10.1007/s42452-019-1012-4.

Pang, L., Liu, Z., Wang, D., & An, M. (2022). Review on the Application of Supplementary Cementitious Materials in Self-Compacting Concrete. Crystals, 12(2), 180. doi:10.3390/cryst12020180.

Makul, N., & Sua-Iam, G. (2018). Properties of self-consolidating concrete with rice husk ash and calcium carbonate powder. ACI Materials Journal, 115(5), 675–684. doi:10.14359/51702344.

Ahmad, J., Tufail, R. F., Aslam, F., Mosavi, A., Alyousef, R., Javed, M. F., Zaid, O., & Khan Niazi, M. S. (2021). A step towards sustainable self-compacting concrete by using partial substitution of wheat straw ash and bentonite clay instead of cement. Sustainability (Switzerland), 13(2), 1–17. doi:10.3390/su13020824.

Bheel, N., Awoyera, P., Shar, I. A., Sohu, S., Abbasi, S. A., & Krishna Prakash, A. (2021). Mechanical Properties of Concrete Incorporating Rice Husk Ash and Wheat Straw Ash as Ternary Cementitious Material. Advances in Civil Engineering, 2021, 13. doi:10.1155/2021/2977428.

Usman, M., Khan, A. Y., Farooq, S. H., Hanif, A., Tang, S., Khushnood, R. A., & Rizwan, S. A. (2018). Eco-friendly self-compacting cement pastes incorporating wood waste as cement replacement: A feasibility study. Journal of Cleaner Production, 190, 679–688. doi:10.1016/j.jclepro.2018.04.186.

Mudassir, R. (2021). Domestic Coal Needs are projected to Increase Next Year. Available online: read/20211203/44/1473306/kebutuhan-batu-bara-domestik-diproyeksi-meningkat-tahun-depan (accessed on January 2023).

Sanjuán, M. Á., & Argiz, C. (2022). A Ten-Year Study on Alkali Content of Coal Fly Ash. Fuels, 3(2), 365–374. doi:10.3390/fuels3020023.

Hira, A., Pacini, H., Attafuah-Wadee, K., Vivas-Eugui, D., Saltzberg, M., & Yeoh, T. N. (2022). Plastic Waste Mitigation Strategies: A Review of Lessons from Developing Countries. Journal of Developing Societies, 38(3), 336–359. doi:10.1177/0169796X221104855.

Scalenghe, R. (2018). Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon, 4(12), 1–19. doi:10.1016/j.heliyon.2018.e00941.

Alterary, S. S., & Marei, N. H. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University - Science, 33(6), 1–8. doi:10.1016/j.jksus.2021.101536.

Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. doi:10.1016/j.serj.2017.09.001.

Tayeh, B. A., Hasaniyah, M. W., Zeyad, A. M., & Yusuf, M. O. (2019). Properties of concrete containing recycled seashells as cement partial replacement: A review. Journal of Cleaner Production, 237, 117723. doi:10.1016/j.jclepro.2019.117723.

Grabias-Blicharz, E., & Franus, W. (2022). A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Science of the Total Environment, 160529. doi:10.1016/j.scitotenv.2022.160529.

Kumar, E. A. (2018). Properties of Self Compacting Concrete Containing Fly ash and silica Fume. International Journal of Scientific Development and Research, 3(2), 124–129.

Memon, M. A., Memon, N. A., & Memon, B. A. (2020). Effect of fly ash and un-crushed coarse aggregates on characteristics of SCC. Civil Engineering Journal (Iran), 6(4), 693–701. doi:10.28991/cej-2020-03091501.

Mohammed, A. M., Asaad, D. S., & Al-Hadithi, A. I. (2022). Experimental and statistical evaluation of rheological properties of self-compacting concrete containing fly ash and ground granulated blast furnace slag. Journal of King Saud University - Engineering Sciences, 34(6), 388–397. doi:10.1016/j.jksues.2020.12.005.

Saidi, M. A. A., Hassan, A., Wahit, M. U., Choy, L. J., & Anuar, H. (2020). Thermal, dynamic mechanical analysis and mechanical properties of polybutylene terephthalate/polyethylene terephthalate blends. Jurnal Teknologi, 82(5), 73–83. doi:10.11113/jt.v82.14802.

Panowicz, R., Konarzewski, M., Durejko, T., Szala, M., Łazińska, M., Czerwińska, M., & Prasuła, P. (2021). Properties of polyethylene terephthalate (Pet) after thermo-oxidative aging. Materials, 14(14), 1–16. doi:10.3390/ma14143833.

Ajaj, R., Abu Jadayil, W., Anver, H., & Aqil, E. (2022). A Revision for the Different Reuses of Polyethylene Terephthalate (PET) Water Bottles. Sustainability (Switzerland), 14(8), 1–14. doi:10.3390/su14084583.

Idumah, C. I., & Nwuzor, I. C. (2019). Novel trends in plastic waste management. SN Applied Sciences, 1(11), 1402. doi:10.1007/s42452-019-1468-2.

Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, 1–11. doi:10.1016/j.cscm.2020.e00330.

Akid, A. S. M., Hossain, S., Munshi, M. I. U., Elahi, M. M. A., Sobuz, M. H. R., Tam, V. W. Y., & Islam, M. S. (2021). Assessing the influence of fly ash and polypropylene fiber on fresh, mechanical and durability properties of concrete. Journal of King Saud University - Engineering Sciences. doi:10.1016/j.jksues.2021.06.005.

Chu, H. H., Siddiq, B., Aslam, F., Javed, M. F., Wang, W., Joyklad, P., Khan, M. I., Qayyum, S., & Ali, R. (2022). Coupled effect of poly vinyl alcohol and fly ash on mechanical characteristics of concrete. Ain Shams Engineering Journal, 13(3), 1–8. doi:10.1016/j.asej.2021.11.002.

Ongpeng, J. M. C., Barra, J., Carampatana, K., Sebastian, C., Yu, J. J., Aviso, K. B., & Tan, R. R. (2021). Strengthening rectangular columns using recycled PET bottle strips. Engineering Science and Technology, an International Journal, 24(2), 405–413. doi:10.1016/j.jestch.2020.07.006.

Ortega-López, V., García-Llona, A., Revilla-Cuesta, V., Santamaría, A., & San-José, J. T. (2021). Fiber-reinforcement and its effects on the mechanical properties of high-workability concretes manufactured with slag as aggregate and binder. Journal of Building Engineering, 43, 1–15. doi:10.1016/j.jobe.2021.102548.

Alkhaly, Y. R., & Hasan, M. (2022). Characteristics of reactive powder concrete comprising synthesized rice husk ash and quartzite powder. Journal of Cleaner Production, 375, 134154. doi:10.1016/j.jclepro.2022.134154.

Lashari, M. H., Memon, N. A., & Memon, M. A. (2021). Effect of using nylon fibers in self-compacting concrete (SCC). Civil Engineering Journal (Iran), 7(8), 1426–1436. doi:10.28991/cej-2021-03091734.

Hamah Sor, N., Ali, T. K. M., Vali, K. S., Ahmed, H. U., Faraj, R. H., Bheel, N., & Mosavi, A. (2022). The behavior of sustainable self-compacting concrete reinforced with low-density waste Polyethylene fiber. Materials Research Express, 9(3), 1–19. doi:10.1088/2053-1591/ac58e8.

Akhmetov, D., Akhazhanov, S., Jetpisbayeva, A., Pukharenko, Y., Root, Y., Utepov, Y., & Akhmetov, A. (2022). Effect of low-modulus polypropylene fiber on physical and mechanical properties of self-compacting concrete. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2021.e00814.

Ahmad, J., Aslam, F., Zaid, O., Alyousef, R., Alabduljabbar, H., & Manan, A. (2021). Self-fibers compacting concrete properties reinforced with propylene fibers. Science and Engineering of Composite Materials, 28(1), 64–72. doi:10.1515/secm-2021-0006.

Ning, X., Li, J., & Li, Y. (2022). An Explorative Study into the Influence of Different Fibers on the Spalling Resistance and Mechanical Properties of Self-Compacting Concrete after Exposure to Elevated Temperatures. Applied Sciences (Switzerland), 12(24), 12779. doi:10.3390/app122412779.

Sobuz, M. H. R., Saha, A., Anamika, J. F., Houda, M., Azab, M., Akid, A. S. M., & Rana, M. J. (2022). Development of Self-Compacting Concrete Incorporating Rice Husk Ash with Waste Galvanized Copper Wire Fiber. Buildings, 12(7). doi:10.3390/buildings12071024.

Nepomuceno, M. C. S., & Bernardo, L. F. A. (2019). Evaluation of self-compacting concrete strength with non-destructive tests for concrete structures. Applied Sciences (Switzerland), 9(23), 1–18. doi:10.3390/app9235109.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-014


  • There are currently no refbacks.

Copyright (c) 2023 Slamet Widodo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.