Development of Eco-friendly Self-compacting Concrete Using Fly Ash and Waste Polyethylene Terephthalate Bottle Fiber
Abstract
Doi: 10.28991/CEJ-2023-09-02-014
Full Text: PDF
Keywords
References
Concha, N. C., & Baccay, M. A. (2020). Effects of mineral and chemical admixtures on the rheological properties of self-compacting concrete. International Journal of GEOMATE, 18(66), 24–29. doi:10.21660/2020.66.9138.
EFNARC. (2005). The European Guidelines for Self-Compacting Concrete Specification, Production and Use. European Federation for Specialist Construction Chemicals and Concrete Systems, Norfolk, United Kingdom.
Kheder, G. F., & Al Jadiri, R. S. (2010). New method for proportioning self-consolidating concrete based on compressive strength requirements. ACI Materials Journal, 107(5), 490–497. doi:10.14359/51663969.
Widodo, S., Ma’arif, F., Gao, Z., & Nugroho, M. S. (2022). Use of Ground Calcium Carbonate for Self-compacting Concrete Development based on Various Water Content and Binder Compositions. The Open Civil Engineering Journal, 16(1), 1–8. doi:10.2174/18741495-v16-e2208180.
Rwamamara, R., & Simonsson, P. (2012). Self-compacting concrete use for construction work environment sustainability. Journal of Civil Engineering and Management, 18(5), 724–734. doi:10.3846/13923730.2012.723399.
Murdono, F., Agustin, W., Soeprapto, G., & Sunarso, M. (2017). Advantage of using high strength self-compacting concrete for precast product. AIP Conference Proceedings, 1903, 30009. doi:10.1063/1.5011516.
Dybeł, P., & Kucharska, M. (2021). Multilayer casting of eco-efficient self-compacting concrete with reduced binder content. Materials, 14(19), 1–13. doi:10.3390/ma14195685.
Quan, H., & Kasami, H. (2018). Experimental Study on the Effects of Recycled Concrete Powder on Properties of Self-Compacting Concrete. The Open Civil Engineering Journal, 12(1), 430–440. doi:10.2174/1874149501812010430.
Shah, S. A. R., Ahmad, H., Alhazmi, H., Anwar, M. K., & Iqbal, F. (2021). Utilization of self-consolidated green material for sustainable development: An environment friendly waste materials application for circular economy. Polymers, 13(17), 2985. doi:10.3390/polym13172985.
Adesina, A., & Awoyera, P. (2019). Overview of trends in the application of waste materials in self-compacting concrete production. SN Applied Sciences, 1(9), 962. doi:10.1007/s42452-019-1012-4.
Pang, L., Liu, Z., Wang, D., & An, M. (2022). Review on the Application of Supplementary Cementitious Materials in Self-Compacting Concrete. Crystals, 12(2), 180. doi:10.3390/cryst12020180.
Makul, N., & Sua-Iam, G. (2018). Properties of self-consolidating concrete with rice husk ash and calcium carbonate powder. ACI Materials Journal, 115(5), 675–684. doi:10.14359/51702344.
Ahmad, J., Tufail, R. F., Aslam, F., Mosavi, A., Alyousef, R., Javed, M. F., Zaid, O., & Khan Niazi, M. S. (2021). A step towards sustainable self-compacting concrete by using partial substitution of wheat straw ash and bentonite clay instead of cement. Sustainability (Switzerland), 13(2), 1–17. doi:10.3390/su13020824.
Bheel, N., Awoyera, P., Shar, I. A., Sohu, S., Abbasi, S. A., & Krishna Prakash, A. (2021). Mechanical Properties of Concrete Incorporating Rice Husk Ash and Wheat Straw Ash as Ternary Cementitious Material. Advances in Civil Engineering, 2021, 13. doi:10.1155/2021/2977428.
Usman, M., Khan, A. Y., Farooq, S. H., Hanif, A., Tang, S., Khushnood, R. A., & Rizwan, S. A. (2018). Eco-friendly self-compacting cement pastes incorporating wood waste as cement replacement: A feasibility study. Journal of Cleaner Production, 190, 679–688. doi:10.1016/j.jclepro.2018.04.186.
Mudassir, R. (2021). Domestic Coal Needs are projected to Increase Next Year. Available online: https://ekonomi.bisnis.com/ read/20211203/44/1473306/kebutuhan-batu-bara-domestik-diproyeksi-meningkat-tahun-depan (accessed on January 2023).
Sanjuán, M. Á., & Argiz, C. (2022). A Ten-Year Study on Alkali Content of Coal Fly Ash. Fuels, 3(2), 365–374. doi:10.3390/fuels3020023.
Hira, A., Pacini, H., Attafuah-Wadee, K., Vivas-Eugui, D., Saltzberg, M., & Yeoh, T. N. (2022). Plastic Waste Mitigation Strategies: A Review of Lessons from Developing Countries. Journal of Developing Societies, 38(3), 336–359. doi:10.1177/0169796X221104855.
Scalenghe, R. (2018). Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon, 4(12), 1–19. doi:10.1016/j.heliyon.2018.e00941.
Alterary, S. S., & Marei, N. H. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University - Science, 33(6), 1–8. doi:10.1016/j.jksus.2021.101536.
Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. doi:10.1016/j.serj.2017.09.001.
Tayeh, B. A., Hasaniyah, M. W., Zeyad, A. M., & Yusuf, M. O. (2019). Properties of concrete containing recycled seashells as cement partial replacement: A review. Journal of Cleaner Production, 237, 117723. doi:10.1016/j.jclepro.2019.117723.
Grabias-Blicharz, E., & Franus, W. (2022). A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Science of the Total Environment, 160529. doi:10.1016/j.scitotenv.2022.160529.
Kumar, E. A. (2018). Properties of Self Compacting Concrete Containing Fly ash and silica Fume. International Journal of Scientific Development and Research, 3(2), 124–129.
Memon, M. A., Memon, N. A., & Memon, B. A. (2020). Effect of fly ash and un-crushed coarse aggregates on characteristics of SCC. Civil Engineering Journal (Iran), 6(4), 693–701. doi:10.28991/cej-2020-03091501.
Mohammed, A. M., Asaad, D. S., & Al-Hadithi, A. I. (2022). Experimental and statistical evaluation of rheological properties of self-compacting concrete containing fly ash and ground granulated blast furnace slag. Journal of King Saud University - Engineering Sciences, 34(6), 388–397. doi:10.1016/j.jksues.2020.12.005.
Saidi, M. A. A., Hassan, A., Wahit, M. U., Choy, L. J., & Anuar, H. (2020). Thermal, dynamic mechanical analysis and mechanical properties of polybutylene terephthalate/polyethylene terephthalate blends. Jurnal Teknologi, 82(5), 73–83. doi:10.11113/jt.v82.14802.
Panowicz, R., Konarzewski, M., Durejko, T., Szala, M., Łazińska, M., Czerwińska, M., & Prasuła, P. (2021). Properties of polyethylene terephthalate (Pet) after thermo-oxidative aging. Materials, 14(14), 1–16. doi:10.3390/ma14143833.
Ajaj, R., Abu Jadayil, W., Anver, H., & Aqil, E. (2022). A Revision for the Different Reuses of Polyethylene Terephthalate (PET) Water Bottles. Sustainability (Switzerland), 14(8), 1–14. doi:10.3390/su14084583.
Idumah, C. I., & Nwuzor, I. C. (2019). Novel trends in plastic waste management. SN Applied Sciences, 1(11), 1402. doi:10.1007/s42452-019-1468-2.
Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, 1–11. doi:10.1016/j.cscm.2020.e00330.
Akid, A. S. M., Hossain, S., Munshi, M. I. U., Elahi, M. M. A., Sobuz, M. H. R., Tam, V. W. Y., & Islam, M. S. (2021). Assessing the influence of fly ash and polypropylene fiber on fresh, mechanical and durability properties of concrete. Journal of King Saud University - Engineering Sciences. doi:10.1016/j.jksues.2021.06.005.
Chu, H. H., Siddiq, B., Aslam, F., Javed, M. F., Wang, W., Joyklad, P., Khan, M. I., Qayyum, S., & Ali, R. (2022). Coupled effect of poly vinyl alcohol and fly ash on mechanical characteristics of concrete. Ain Shams Engineering Journal, 13(3), 1–8. doi:10.1016/j.asej.2021.11.002.
Ongpeng, J. M. C., Barra, J., Carampatana, K., Sebastian, C., Yu, J. J., Aviso, K. B., & Tan, R. R. (2021). Strengthening rectangular columns using recycled PET bottle strips. Engineering Science and Technology, an International Journal, 24(2), 405–413. doi:10.1016/j.jestch.2020.07.006.
Ortega-López, V., García-Llona, A., Revilla-Cuesta, V., Santamaría, A., & San-José, J. T. (2021). Fiber-reinforcement and its effects on the mechanical properties of high-workability concretes manufactured with slag as aggregate and binder. Journal of Building Engineering, 43, 1–15. doi:10.1016/j.jobe.2021.102548.
Alkhaly, Y. R., & Hasan, M. (2022). Characteristics of reactive powder concrete comprising synthesized rice husk ash and quartzite powder. Journal of Cleaner Production, 375, 134154. doi:10.1016/j.jclepro.2022.134154.
Lashari, M. H., Memon, N. A., & Memon, M. A. (2021). Effect of using nylon fibers in self-compacting concrete (SCC). Civil Engineering Journal (Iran), 7(8), 1426–1436. doi:10.28991/cej-2021-03091734.
Hamah Sor, N., Ali, T. K. M., Vali, K. S., Ahmed, H. U., Faraj, R. H., Bheel, N., & Mosavi, A. (2022). The behavior of sustainable self-compacting concrete reinforced with low-density waste Polyethylene fiber. Materials Research Express, 9(3), 1–19. doi:10.1088/2053-1591/ac58e8.
Akhmetov, D., Akhazhanov, S., Jetpisbayeva, A., Pukharenko, Y., Root, Y., Utepov, Y., & Akhmetov, A. (2022). Effect of low-modulus polypropylene fiber on physical and mechanical properties of self-compacting concrete. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2021.e00814.
Ahmad, J., Aslam, F., Zaid, O., Alyousef, R., Alabduljabbar, H., & Manan, A. (2021). Self-fibers compacting concrete properties reinforced with propylene fibers. Science and Engineering of Composite Materials, 28(1), 64–72. doi:10.1515/secm-2021-0006.
Ning, X., Li, J., & Li, Y. (2022). An Explorative Study into the Influence of Different Fibers on the Spalling Resistance and Mechanical Properties of Self-Compacting Concrete after Exposure to Elevated Temperatures. Applied Sciences (Switzerland), 12(24), 12779. doi:10.3390/app122412779.
Sobuz, M. H. R., Saha, A., Anamika, J. F., Houda, M., Azab, M., Akid, A. S. M., & Rana, M. J. (2022). Development of Self-Compacting Concrete Incorporating Rice Husk Ash with Waste Galvanized Copper Wire Fiber. Buildings, 12(7). doi:10.3390/buildings12071024.
Nepomuceno, M. C. S., & Bernardo, L. F. A. (2019). Evaluation of self-compacting concrete strength with non-destructive tests for concrete structures. Applied Sciences (Switzerland), 9(23), 1–18. doi:10.3390/app9235109.
DOI: 10.28991/CEJ-2023-09-02-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Slamet Widodo
This work is licensed under a Creative Commons Attribution 4.0 International License.