Evaluation of Liquefaction Potential based on Cone Penetration Test (CPT) and Semi-empirical Methods
Downloads
Doi: 10.28991/CEJ-2023-09-02-013
Full Text: PDF
[2] Kishida, H. (1966). Damage to Reinforced Concrete Buildings in Niigata City with Special Reference to Foundation Engineering. Soils and Foundations, 6(1), 71–88. doi:10.3208/sandf1960.6.71.
[3] Walsh, T. J., Combellick, R. A., & Black, G. L. (1995). Liquefaction features from a subduction zone earthquake: preserved examples from the 1964 Alaska earthquake. Division of Geology and Earth Resources, Washington State Department of Natural Resources, Washington, United States.
[4] Ishibashi, I., & Zhang, X. (1993). Unified dynamic shear moduli and damping ratios of sand and clay. Soils and Foundations, 33(1), 182–191. doi:10.3208/sandf1972.33.182.
[5] Dobry, R., & Ladd, R. S. (1980). Discussion of "Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes and Liquefaction Potential: Science versus Practice.” Journal of the Geotechnical Engineering Division, 106(6), 720–724. doi:10.1061/ajgeb6.0000984.
[6] Nemat-Nasser, S., & Shokooh, A. (1979). A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing. Canadian Geotechnical Journal, 16(4), 659–678. doi:10.1139/t79-076.
[7] Juang, C. H., Yuan, H., Lee, D.-H., & Lin, P.-S. (2003). Simplified Cone Penetration Test-based Method for Evaluating Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 129(1), 66–80. doi:10.1061/(asce)1090-0241(2003)129:1(66).
[8] Olsen, R. S. (1997). Cyclic liquefaction based on the cone penetrometer test. Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, 225-276, 5-6 January, 1996, State University of New York, Buffalo, United States.
[9] Robertson, P. K., & Wride, C. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442–459. doi:10.1139/t98-017.
[10] Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2–4), 115–130. doi:10.1016/j.soildyn.2004.11.023.
[11] Youd, T. L., & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297–313. doi:10.1061/(asce)1090-0241(2001)127:4(297).
[12] Latifi, F. E., Baba, K., Bahi, L., Touijrate, S., & Cherradi, C. (2020). Semi-empirical method for evaluating risk of liquefaction during earthquakes a study case of rhiss dam. E3S Web of Conferences, 150, 100. doi:10.1051/e3sconf/202015001004.
[13] Touijrate, S., Baba, K., Ahatri, M., Bahi, L. (2019). The Liquefaction Potential of Sandy Silt Layers Using the Correlation Between Penetrometer Test and SPT Test. Dynamic Soil-Structure Interaction for Sustainable Infrastructures, GeoMEast 2018. Sustainable Civil Infrastructures. Springer, Cham, Switzerland. doi:10.1007/978-3-030-01920-4_2.
[14] Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2018). Validation and Verification of Semi-Empirical Methods for Evaluating Liquefaction Using Finite Element Method. MATEC Web of Conferences, 149, 02028. doi:10.1051/matecconf/201814902028.
[15] Olsen, R. S. (1984). Liquefaction analysis using the cone penetrometer test. Proceedings of the 8th World Conference on Earthquake Engineering, 247-254, San Francisco, United States.
[16] Bouafia, A. (2011). In situ tests in foundation projects (3rd Ed.) OPU editions, University Publications Office, Algiers, Algeria.
[17] Lankelma G.Z. (2023). Les spécialistes du pénétromètre statique. Available online: http://www.lankelma.fr/penetrometre.html (accessed on January 2023).
[18] Zhang, L., Peng, Y., & Yang, J. (2019). Transformation of dissolved organic matter during advanced coal liquefaction wastewater treatment and analysis of its molecular characteristics. Science of the Total Environment, 658, 1334-1343. doi:10.1016/j.scitotenv.2018.12.218.
[19] Park, T., So, S., Jeong, B., Zhou, P., & Lee, J. U. (2021). Life cycle assessment for enhanced Re-liquefaction systems applied to LNG carriers; effectiveness of partial Re-liquefaction system. Journal of Cleaner Production, 285, 124832. doi:10.1016/j.jclepro.2020.124832.
[20] Seed, H. B., & Idriss, I. M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249–1273. doi:10.1061/jsfeaq.0001662.
[21] Hossain, M. B., Roknuzzaman, M., & Rahman, M. M. (2022). Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches. Civil Engineering Journal, 8(7), 1459-1481. doi:10.28991/CEJ-2022-08-07-010.
[22] Harder Jr, L. F., & Boulanger, R. (1997). Application of K and K correction factors. Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, 225-276, 5-6 January, 1996, State University of New York, Buffalo, United States.
[23] Rolsen, R. S., Koester J. P., & Hynes, M. E. (1996). Evaluation of liquefaction potential using CPT. Proceedings of the 28th joint meeting of the US-Japan cooperative Program in natural resources - Panel on Wind and seismic effects, Us national Institute of standards and technology, 14-17 May, 1996, Gaithersburg, Maryland, United States.
[24] Wei, Y., Fakudze, S., Yang, S., Zhang, Y., Xue, T., Han, J., & Chen, J. (2023). Synergistic citric acid-surfactant catalyzed hydrothermal liquefaction of pomelo peel for production of hydrocarbon-rich bio-oil. Science of The Total Environment, 857, 159235. doi:10.1016/j.scitotenv.2022.159235.
[25] Seed, H. B. (1982). Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Oakland, United States.
[26] Liao, S. S., & Whitman, R. V. (1986). A catalog of liquefaction and non-liquefaction occurrences during earthquakes. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, United Sates.
[27] Chen, C. J., & Juang, C. H. (2000). Calibration of SPT- and CPT-Based Liquefaction Evaluation Methods. Innovations and Applications in Geotechnical Site Characterization, Geo-Denver 2000, 49-64. doi:10.1061/40505(285)4.
[28] Du Maroc, R. (2001). The Seismic Construction Regulations. Report RPS2000, Ministry of ATUHE, State Secretariat for Housing, Rabat, Morocco.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
