Subsurface Analysis Using Microtremor and Resistivity to Determine Soil Vulnerability and Discovery of New Local Fault
Downloads
Doi: 10.28991/CEJ-2023-09-09-014
Full Text: PDF
[2] BMKG. (2021). Recent Earthquakes (M ≥ 5.0). Government of Indonesia: Meteorology, Climatology, and Geophysical Agency. Badan Meteorologi, Klimatologi, dan Geofisika, Jakarta, Indonesia. Available online: https://www.bmkg.go.id/gempabumi-terkini.html (accessed on April 2023). (In Indonesian)
[3] Kanai, K. (1983). Engineering seismology. University of Tokyo Press, Tokyo, Japan.
[4] Nakamura, Y. (1989). Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 30(1), 25–33.
[5] Akkaya, İ. (2020). Availability of seismic vulnerability index (K g) in the assessment of building damage in Van, Eastern Turkey. Earthquake Engineering and Engineering Vibration, 19(1), 189–204. doi:10.1007/s11803-020-0556-z.
[6] Lermo, J., & Chávez-García, F. J. (1994). Site effect evaluation at Mexico City: Dominant period and relative amplification from strong motion and microtremor records. Soil Dynamics and Earthquake Engineering, 13(6), 413–423. doi:10.1016/0267-7261(94)90012-4.
[7] Mahajan, A. K., Mundepi, A. K., Chauhan, N., Jasrotia, A. S., Rai, N., & Gachhayat, T. K. (2012). Active seismic and passive microtremor HVSR for assessing site effects in Jammu city, NW Himalaya, India-A case study. Journal of Applied Geophysics, 77, 51–62. doi:10.1016/j.jappgeo.2011.11.005.
[8] Putti, S. P., & Satyam, N. (2020). Evaluation of Site Effects Using HVSR Microtremor Measurements in Vishakhapatnam (India). Earth Systems and Environment, 4(2), 439–454. doi:10.1007/s41748-020-00158-6.
[9] Haerudin, N., Rustadi, Alami, F., & Yogi, I. B. S. (2020). The effect site analysis based on microtremor data using the Horizontal to Vertical Spectral Ratio (HVSR) method in the Bandar Lampung City. Journal of Physics: Conference Series, 1572(1), 012075. doi:10.1088/1742-6596/1572/1/012075.
[10] Widia Pamungkas Isburhan, R., Nuraeni, G., Verdhora Ry, R., Yudistira, T., Cipta, A., & Cummins, P. (2019). Horizontal-to-Vertical Spectral Ratio (HVSR) Method for Earthquake Risk Determination of Jakarta City with Microtremor Data. IOP Conference Series: Earth and Environmental Science, 318(1), 12033. doi:10.1088/1755-1315/318/1/012033.
[11] Stanko, D., MarkuŠ¡ić, S., Gazdek, M., Sanković, V., Slukan, I., & IvanÄić, I. (2019). Assessment of the seismic site amplification in the city of ivanec (NW part of Croatia) using the microtremor HVSR method and equivalent-linear site response analysis. Geosciences (Switzerland), 9(7), 312. doi:10.3390/geosciences9070312.
[12] Fat-Helbary, R. E. S., El-Faragawy, K. O., & Hamed, A. (2019). Application of HVSR technique in the site effects estimation at the south of Marsa Alam city, Egypt. Journal of African Earth Sciences, 154, 89–100. doi:10.1016/j.jafrearsci.2019.03.015.
[13] Yaghmaei-Sabegh, S., & Rupakhety, R. (2020). A new method of seismic site classification using HVSR curves: A case study of the 12 November 2017 Mw 7.3 Ezgeleh earthquake in Iran. Engineering Geology, 270, 105574. doi:10.1016/j.enggeo.2020.105574.
[14] Theodoulidis, N., Dushi, E., Duni, L., Grendas, I., Panou, A., Hajrullai, A., Kuka, N., & Koci, R. (2022). Local Site Effects Investigation in Durres City (Albania) Using Ambient Noise, after the 26 November 2019 (M6.4) Destructive Earthquake. Applied Sciences (Switzerland), 12(22), 11309. doi:10.3390/app122211309.
[15] Li, J., Zhou, B., Rong, M., Chen, S., & Zhou, Y. (2020). Estimation of source spectra, attenuation, and site responses from strong-motion data recorded in the 2019 Changning earthquake sequence. Bulletin of the Seismological Society of America, 110(2), 410–426. doi:10.1785/0120190207.
[16] Cetin, K. O., Altun, S., Askan, A., Akgün, M., Sezer, A., Kıncal, C., Özdağ, Ö. C., İpek, Y., Unutmaz, B., Gülerce, Z., Özacar, A. A., Ilgaç, M., Can, G., Cakir, E., Söylemez, B., El-Sayeed, A., Zarzour, M., Bozyiğit, İ., Tuna, Ç., ... Karaali, E. (2022). The site effects in Izmir Bay of October 30 2020, M7.0 Samos Earthquake. Soil Dynamics and Earthquake Engineering, 152, 107051. doi:10.1016/j.soildyn.2021.107051.
[17] Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. John Wiley & Sons, Hoboken, United States.
[18] Robot, L. C., Manyoe, I. N., Arifin, Y. I., Saputra, M. J. A., Bilgais, A. A., Abdullah, R. A., & Napu, S. S. S. (2021). Surface and subsurface analysis based on the geological structure and electrical resistivity Data in Gorontalo Outer Ring Road (GORR), Huidu Utara. Journal of Physics: Conference Series, 1968(1), 12054. doi:10.1088/1742-6596/1968/1/012054.
[19] Susilo, A., Fitriah, F., Sunaryo, Ayu Rachmawati, E. T., & Suryo, E. A. (2020). Analysis of landslide area of Tulung subdistrict, Ponorogo, Indonesia in 2017 using resistivity method. Smart and Sustainable Built Environment, 9(4), 341–360. doi:10.1108/SASBE-06-2019-0082.
[20] Hossain, M. B., Roknuzzaman, M., & Rahman, M. M. (2022). Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches. Civil Engineering Journal, 8(7), 1459-1481. doi:10.28991/CEJ-2022-08-07-010.
[21] Hasan, M. F. R., Salimah, A., Susilo, A., Rahmat, A., Nurtanto, M., & Martina, N. (2022). Identification of Landslide Area Using Geoelectrical Resistivity Method as Disaster Mitigation Strategy. International Journal on Advanced Science, Engineering and Information Technology, 12(4), 1484–1490. doi:10.18517/ijaseit.12.4.14694.
[22] Chasanah, U., Handoyo, E., Rahmawati, N. N., & Musfiana, M. (2022). Mapping Risk Level Based on Peak Ground Acceleration (PGA) and Earthquake Intensity Using Multievent Earthquake Data in Malang Regency, East Java, Indonesia. Journal of Physical Science, 14(1), 64–72. doi:10.25077/jif.14.1.64-72.2022.
[23] Muntafi, Y., & Nojima, N. (2021). The Spatio-temporal Tectonic Condition and Microzonation Map of Malang Region after the 2021 M6.1 Malang Earthquake for Disaster Risk Mitigation. IOP Conference Series: Earth and Environmental Science, 933(1), 12031. doi:10.1088/1755-1315/933/1/012031.
[24] Tawakal, M. I., Haris, A., & Martha, A. A. (2020). Estimating shear wave velocity (Vs30) of East Java, Indonesia, using ambient noise inversion of horizontal to vertical spectral ratio (HVSR). IOP Conference Series: Earth and Environmental Science, 538(1), 12012. doi:10.1088/1755-1315/538/1/012012.
[25] Keskinsezer, A., & Dağ, E. (2019). Investigating of soil features and landslide risk in Western-Atakent (İstanbul) using resistivity, MASW, Microtremor and boreholes methods. Open Geosciences, 11(1), 1112–1128. doi:10.1515/geo-2019-0086.
[26] Khalili, M., & Mirzakurdeh, A. V. (2019). Fault detection using microtremor data (HVSR-based approach) and electrical resistivity survey. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 400–408. doi:10.1016/j.jrmge.2018.12.003.
[27] Demirci, A., Kaya, M. A., Bekler, T., & Ekinci, Y. L. (2007). Microtremor and Resistivity Studies for Evaluating Ground Conditions in Canakkale. Near Surface 2007 - 13th EAGE European Meeting of Environmental and Engineering Geophysics. doi:10.3997/2214-4609.20146621.
[28] Zhu, C., Pilz, M., & Cotton, F. (2020). Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation. Soil Dynamics and Earthquake Engineering, 139, 106301. doi:10.1016/j.soildyn.2020.106301.
[29] Talha Qadri, S. M., Nawaz, B., Sajjad, S. H., & Sheikh, R. A. (2015). Ambient noise H/V spectral ratio in site effects estimation in Fateh Jang area, Pakistan. Earthquake Science, 28(1), 87–95. doi:10.1007/s11589-014-0105-9.
[30] Bour, M., Fouissac, D., Dominique, P., & Martin, C. (1998). On the use of microtremor recordings in seismic microzonation. Soil Dynamics and Earthquake Engineering, 17(7–8), 465–474. doi:10.1016/S0267-7261(98)00014-1.
[31] Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. Cambridge University Press, 792. doi:10.1017/CBO9781139167932.
[32] van Bemmelen, R.W. (1949). General Geology of Indonesia and Adjacent Archipelagoes. Government Printing Office, The Hague, Netherlands.
[33] Sujanto, R., Hadisantono, R., Chaniago, R., & Baharuddin, R. (1992). Geological Map of The Turen Quadrangle, Jawa. Geological Research and Development Centre, Bandung, Indonesia.
[34] Khan, S., Waseem, M., & Jan, S. (2021). Site response studies in Peshawar using the Nakamura technique of HVSR. Arabian Journal of Geosciences, 14(3). doi:10.1007/s12517-021-06527-3.
[35] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. doi:10.1016/j.epsl.2008.07.020.
[36] Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India, Noida, India.
[37] Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura's technique and its applications. Proceedings of the 12th world conference on earthquake engineering, 30 January-4 February, Auckland, New Zealand.
[38] Khalqillah, A., Muksin, U., Musfirah, Ningsih, W. A., & Irwandi. (2019). SVIM: A Program for Seismic Vulnerability Index Determination and HVSR Data Processing. IOP Conference Series: Earth and Environmental Science, 273(1), 012016. doi:10.1088/1755-1315/273/1/012016.
[39] Prabowo, U. N., Amalia, A. F., & Wiranata, F. E. (2018). Local site effect of soil slope based on microtremor measurement in Samigaluh, Kulon Progo Yogyakarta. Journal of Physics: Conference Series, 997(1), 12007. doi:10.1088/1742-6596/997/1/012007.
[40] Rochman, J. P. G. N., Sadewa, M. A., & Putra, A. M. (2023). Earthquake Microzonation Using Microtremor Analysis and Horizontal to Vertical Spectral Ratio Method Study Case at Ampelgading and Tirtoyudo Sub-district, Malang, East Java. Advances in Engineering Research, 127–136. doi:10.2991/978-94-6463-148-7_14.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
