A Comparative Study on the Optimal Modeling of Laminated Glass
Downloads
Doi: 10.28991/CEJ-2023-09-11-018
Full Text: PDF
[2] Teotia, M., & Soni, R. K. (2018). Applications of finite element modelling in failure analysis of laminated glass composites: A review. Engineering Failure Analysis, 94, 412–437. doi:10.1016/j.engfailanal.2018.08.016.
[3] US7611773B2. (2009). Glass Composition and Laminated Glass. US Patent, Alexandria, United States.
[4] Castori, G., & Speranzini, E. (2017). Structural analysis of failure behavior of laminated glass. Composites Part B: Engineering, 125, 89–99. doi:10.1016/j.compositesb.2017.05.062.
[5] Wu, G., & Yang, J. M. (2005). The mechanical behavior of GLARE laminates for aircraft structures. Failure in Structural Materials, 57(1), 72–79. doi:10.1007/s11837-005-0067-4.
[6] Vedrtnam, A. (2019). Novel treatment methods for improving fatigue behavior of laminated glass. Composites Part B: Engineering, 167, 180–198. doi:10.1016/j.compositesb.2018.12.037.
[7] Kranzer, C., Gürke, G., & Mayrhofer, C. (2005). Testing of bomb resistant glazing systems. Experimental investigation of the time dependent deflection of blast loaded 7.5 mm laminated glass. Glass processing days (June 2005). Tampere, Finland.
[8] Biolzi, L., Cattaneo, S., Orlando, M., Piscitelli, L. R., & Spinelli, P. (2018). Post-failure behavior of laminated glass beams using different interlayers. Composite Structures, 202, 578–589. doi:10.1016/j.compstruct.2018.03.009.
[9] Lu, Y., Zhao, S., & Chen, S. (2023). Compressive buckling performance of multilayer laminated glass columns with different interlayers. Engineering Structures, 281. doi:10.1016/j.engstruct.2023.115701.
[10] Schuster, M. (2022). Characterization of laminated safety glass interlayers: thermorheology, crystallinity and viscoelasticity. Technische Universität Darmstadt, 341. doi:10.26083/tuprints-00021741.
[11] Rühl, A., Kolling, S., & Schneider, J. (2017). Characterization and modeling of poly(methyl methacrylate) and thermoplastic polyurethane for the application in laminated setups. Mechanics of Materials, 113, 102–111. doi:10.1016/j.mechmat.2017.07.018.
[12] Kraus, M. A. (2019). Machine learning techniques for the material parameter identification of laminated glass in the intact and post-fracture state. Thesis, University of the Bundeswehr Munich, Neubiberg, Germany.
[13] Chen, X., Rosendahl, P. L., Chen, S., & Schneider, J. (2021). On the delamination of polyvinyl butyral laminated glass: Identification of fracture properties from numerical modelling. Construction and Building Materials, 306(124827). doi:10.1016/j.conbuildmat.2021.124827.
[14] Del Linz, P., Hooper, P. A., Arora, H., Wang, Y., Smith, D., Blackman, B. R. K., & Dear, J. P. (2017). Delamination properties of laminated glass windows subject to blast loading. International Journal of Impact Engineering, 105, 39–53. doi:10.1016/j.ijimpeng.2016.05.015.
[15] Foraboschi, P. (2012). Analytical model for laminated-glass plate. Composites Part B: Engineering, 43(5), 2094–2106. doi:10.1016/j.compositesb.2012.03.010.
[16] Baraldi, D., Cecchi, A., & Foraboschi, P. (2016). Broken tempered laminated glass: Non-linear discrete element modeling. Composite Structures, 140, 278–295. doi:10.1016/j.compstruct.2015.12.050.
[17] Shahriari, M., & Saeidi Googarchin, H. (2020). Prediction of vehicle impact speed based on the post-cracking behavior of automotive PVB laminated glass: Analytical modeling and numerical cohesive zone modeling. Engineering Fracture Mechanics, 240. doi:10.1016/j.engfracmech.2020.107352.
[18] Seyedalikhani, S., Shokrieh, M. M., & Shamaei-Kashani, A. R. (2020). A novel dynamic constitutive micromechanical model to predict the strain rate dependent mechanical behavior of glass/epoxy laminated composites. Polymer Testing, 82. doi:10.1016/j.polymertesting.2019.106292.
[19] Biolzi, L., Casolo, S., Orlando, M., & Tateo, V. (2019). Modelling the response of a laminated tempered glass for different configurations of damage by a rigid body spring model. Engineering Fracture Mechanics, 218. doi:10.1016/j.engfracmech.2019.106596.
[20] Malewski, A., KozŠ‚owski, M., Podwórny, J., Ššroda, M., & Sumelka, W. (2023). Developments on Constitutive Material Model for Architectural Soda-Lime Silicate (SLS) Glass and Evaluation of Key Modelling Parameters. Materials, 16(1), 397. doi:10.3390/ma16010397.
[21] Zhang, X., Hao, H., & Ma, G. (2015). Dynamic material model of annealed soda-lime glass. International Journal of Impact Engineering, 77, 108–119. doi:10.1016/j.ijimpeng.2014.11.016.
[22] Balan, B. A., & Achintha, M. (2015). Assessment of Stresses in Float and Tempered Glass Using Eigenstrains. Experimental Mechanics, 55(7), 1301–1315. doi:10.1007/s11340-015-0036-y.
[23] Nielsen, J. H., & Bjarrum, M. (2017). Deformations and strain energy in fragments of tempered glass: experimental and numerical investigation. Glass Structures and Engineering, 2(2), 133–146. doi:10.1007/s40940-017-0043-8.
[24] Bonati, A., Pisano, G., & Royer Carfagni, G. (2020). Probabilistic considerations about the strength of laminated annealed float glass. Glass Structures and Engineering, 5(1), 27–40. doi:10.1007/s40940-019-00111-8.
[25] Osnes, K., Bí¸rvik, T., & Hopperstad, O. S. (2018). Testing and modelling of annealed float glass under quasi-static and dynamic loading. Engineering Fracture Mechanics, 201, 107–129. doi:10.1016/j.engfracmech.2018.05.031.
[26] Brokmann, C., Alter, C., & Kolling, S. (2023). A Methodology for Stochastic Simulation of Head Impact on Windshields. Applied Mechanics, 4(1), 179–190. doi:10.3390/applmech4010010.
[27] SerafinaviÄius, T., Lebet, J. P., Louter, C., Lenkimas, T., & Kuranovas, A. (2013). Long-term laminated glass four point bending test with PVB, EVA and SG interlayers at different temperatures. Procedia Engineering, 57, 996–1004. doi:10.1016/j.proeng.2013.04.126.
[28] Rivers, G., & Cronin, D. (2019). Influence of moisture and thermal cycling on delamination flaws in transparent armor materials: Thermoplastic polyurethane bonded glass-polycarbonate laminates. Materials and Design, 182(108026). doi:10.1016/j.matdes.2019.108026.
[29] Parratt, M. (2016). Behaviour of Multi-Layered Laminated Glass under Blast Loading. Master Thesis, University of Toronto, Toronto, Canada.
[30] Kuntsche, J., & Schneider, J. (2014). Mechanical behaviour of polymer interlayers in explosion resistant glazing. In Challenging Glass 4 and COST Action TU0905 Final Conference - Proceedings of the Challenging Glass 4 and Cost Action TU0905 Final Conference, 447–454. doi:10.1201/b16499-65.
[31] Angelides, S. C. (2022). Blast Resilience of Glazed Façades: Towards a New Understanding of the Post-Fracture Behaviour of Laminated Glass. PhD Thesis, University of Cambridge. doi:10.17863/CAM.87476.
[32] Biolzi, L., Cattaneo, S., Orlando, M., Piscitelli, L. R., & Spinelli, P. (2020). Constitutive relationships of different interlayer materials for laminated glass. Composite Structures, 244(112221). doi:10.1016/j.compstruct.2020.112221.
[33] Zhang, L. H., Yao, X. H., Zang, S. G., & Han, Q. (2015). Temperature and strain rate dependent tensile behavior of a transparent polyurethane interlayer. Materials and Design, 65, 1181–1188. doi:10.1016/j.matdes.2014.08.054.
[34] Biolzi, L., Cattaneo, S., & Rosati, G. (2010). Progressive damage and fracture of laminated glass beams. Construction and Building Materials, 24(4), 577–584. doi:10.1016/j.conbuildmat.2009.09.007.
[35] Gao, W., Xiang, J., Chen, S., Yin, S., Zang, M., & Zheng, X. (2017). Intrinsic cohesive modeling of impact fracture behavior of laminated glass. Materials and Design, 127, 321–335. doi:10.1016/j.matdes.2017.04.059.
[36] Alter, C., Kolling, S., & Schneider, J. (2017). A new failure criterion for laminated safety glass. 11th European LS-Dyna Conference, 9-11 May, 2017, Salzburg, Austria.
[37] El-Sisi, A., Newberry, M., Knight, J., Salim, H., & Nawar, M. (2022). Static and high strain rate behavior of aged virgin PVB. Journal of Polymer Research, 29(2), 39. doi:10.1007/s10965-021-02876-5.
[38] Chen, X., Chen, S., & Li, G. (2021). Failure Mode of Framed Polyvinyl-Butyral-Laminated Glass Subjected to Blast Loading. Tongji Daxue Xuebao/Journal of Tongji University, 49(11), 1565–1574. doi:10.11908/j.issn.0253-374x.20306.
[39] Hidallana-Gamage, H. D., Thambiratnam, D. P., & Perera, N. J. (2014). Numerical modelling and analysis of the blast performance of laminated glass panels and the influence of material parameters. Engineering Failure Analysis, 45, 65–84. doi:10.1016/j.engfailanal.2014.06.013.
[40] Wang, X. E., Yang, J., Liu, Q. F., Zhang, Y. M., & Zhao, C. (2017). A comparative study of numerical modelling techniques for the fracture of brittle materials with specific reference to glass. Engineering Structures, 152, 493–505. doi:10.1016/j.engstruct.2017.08.050.
[41] Literature survey General (1985). A review of the literature on finite-element modelling of laminated composite plates. Composites, 16(4), 337. doi:10.1016/0010-4361(85)90318-0.
[42] JaŠ›kowiec, J. (2015). Numerical Modeling Mechanical Delamination in Laminated Glass by XFEM. Procedia Engineering, 108, 293–300. doi:10.1016/j.proeng.2015.06.150.
[43] Sun, X., Khaleel, M. A., & Davies, R. W. (2005). Modeling of Stone-impact Resistance of Monolithic Glass Ply Using Continuum Damage Mechanics. International Journal of Damage Mechanics, 14(2), 165–178. doi:10.1177/1056789505048601.
[44] Ismail, J., Zaí¯ri, F., Naí¯t-Abdelaziz, M., Bouzid, S., & Azari, Z. (2011). Experimental and numerical investigations on erosion damage in glass by impact of small-sized particles. Wear, 271(5–6), 817–826. doi:10.1016/j.wear.2011.03.009.
[45] Lenk, P., & Lambert, H. (2015). Practical aspects of finite-element analysis in structural glass design. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 168(7), 527–538. doi:10.1680/stbu.13.00104.
[46] Gao, W., & Zang, M. (2014). The simulation of laminated glass beam impact problem by developing fracture model of spherical DEM. Engineering Analysis with Boundary Elements, 42, 2–7. doi:10.1016/j.enganabound.2013.11.011.
[47] Wang, X., Yang, J., Pan, Z., Wang, F., Meng, Y., & Zhu, Y. (2021). Exploratory investigation into the post-fracture model of laminated tempered glass using combined Voronoi-FDEM approach. International Journal of Mechanical Sciences, 190, 105989. doi:10.1016/j.ijmecsci.2020.105989.
[48] Nikbakt, S., Kamarian, S., & Shakeri, M. (2018). A review on optimization of composite structures Part I: Laminated composites. Composite Structures, 195, 158–185. doi:10.1016/j.compstruct.2018.03.063.
[49] Zhou, Y., Sun, Y., Huang, T., & Cai, W. (2019). SPH-FEM simulation of impacted composite laminates with different layups. Aerospace Science and Technology, 95, 105469. doi:10.1016/j.ast.2019.105469.
[50] Zhou, Y., Sun, Y., & Cai, W. (2019). Bird-striking damage of rotating laminates using SPH-CDM method. Aerospace Science and Technology, 84, 265–272. doi:10.1016/j.ast.2018.10.009.
[51] Grimaldi, A., Sollo, A., Guida, M., & Marulo, F. (2013). Parametric study of a SPH high velocity impact analysis – A birdstrike windshield application. Composite Structures, 96, 616–630. doi:10.1016/j.compstruct.2012.09.037.
[52] Spiller, K., Packer, J. A., Seica, M. V., & Yankelevsky, D. Z. (2016). Prediction of annealed glass window response to blast loading. International Journal of Impact Engineering, 88, 189–200. doi:10.1016/j.ijimpeng.2015.10.010.
[53] Norville, H. S., & Conrath, E. J. (2001). Considerations for Blast-Resistant Glazing Design. Journal of Architectural Engineering, 7(3), 80–86. doi:10.1061/(asce)1076-0431(2001)7:3(80).
[54] Bedon, C., Larcher, M., Bez, A., & Amadio, C. (2022). Numerical Analysis of TGU Windows under Blast - Glass-Shard Outlook. Challenging Glass 8: Conference on Architectural and Structural Applications of Glass, CGC 2022, 8. doi:10.47982/cgc.8.450.
[55] Cao, K., Wang, Y., & Wang, Y. (2012). Effects of strain rate and temperature on the tension behavior of polycarbonate. Materials and Design, 38, 53–58. doi:10.1016/j.matdes.2012.02.007.
[56] Jayaweera, G. C. S., Hidallana-Gamage, H. D., & Baleshan, B. (2022). Case Studies on Blast Behaviour of Glass Façades: Sri Lanka Easter Bombings. IEEE, 2022 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 1-6. doi:10.1109/mercon55799.2022.9906182.
[57] Saflex. (2023). Saflex Clear Technical Datasheet. Eastman Chemical Company, Tennessee, United States. Available online: https://www.saflex.com/technical-documents (accessed on May 2023).
[58] Huntsman. (2023). KRYSTALFLEX TPU Films for Safety Glazing Applications. Huntsman International LLC, Utah, United States. Available online: https://www.huntsman.com/products/detail/313/krystalflex (accessed on May 2023).
[59] Zhang, X., & Hao, H. (2015). Experimental and numerical study of boundary and anchorage effect on laminated glass windows under blast loading. Engineering Structures, 90, 96–116. doi:10.1016/j.engstruct.2015.02.022.
[60] Wang, K. G., Lea, P., & Farhat, C. (2015). A computational framework for the simulation of high-speed multi-material fluid-structure interaction problems with dynamic fracture. International Journal for Numerical Methods in Engineering, 104(7), 585–623. doi:10.1002/nme.4873.
[61] Morison, C. (2007). The resistance of laminated glass to blast pressure loading and the coefficients for single degree of freedom analysis of laminated glass. Ph.D. Thesis, Cranfield University, Cranfield, United Kingdom.
[62] Larcher, M., Solomos, G., Casadei, F., & Gebbeken, N. (2012). Experimental and numerical investigations of laminated glass subjected to blast loading. International Journal of Impact Engineering, 39(1), 42–50. doi:10.1016/j.ijimpeng.2011.09.006.
[63] Del Linz, P., Hooper, P. A., Arora, H., Smith, D., Pascoe, L., Cormie, D., Blackman, B. R. K., & Dear, J. P. (2015). Reaction forces of laminated glass windows subject to blast loads. Composite Structures, 131, 193–206. doi:10.1016/j.compstruct.2015.04.050.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
