A Comparative Study on the Optimal Modeling of Laminated Glass

Moheldeen A. Hejazi, Ali Sari


This study addresses the challenging task of modeling laminated glass responses to extreme loading scenarios for the design and analysis of protective structures. The primary objective is to seek an optimal modeling approach that balances accuracy and computational efficiency. To achieve this, the failure modeling of laminated glass layups comprising thin and thick panels with three and eleven layers is investigated under blast loading conditions. Various simulation techniques are employed, including the finite element method (FEM) with element erosion/deletion, smoothed particle hydrodynamics (SPH), and a hybrid approach involving the conversion of elements into particles. The feasibility and limitations of each technique are examined, considering both accuracy and computational cost. Experimental results from arena and shock tube testing scenarios assess the deployed modeling techniques and the presented comparisons. Emphasis is placed on mesh sensitivity and the significance of adaptive meshing in capturing fracture patterns. The present paper suggests that utilizing hybrid techniques results in optimal modeling outcomes. Furthermore, the stability of the modeling results under diverse blast conditions is confirmed. This article contributes to the field by offering insights into modeling laminated glass responses to extreme loading, emphasizing the use of hybrid techniques to strike a balance between accuracy and computational efficiency. This research enhances the understanding of protective structure design and analysis, highlighting the critical importance of computational methods in this context.


Doi: 10.28991/CEJ-2023-09-11-018

Full Text: PDF


Laminated Glass; Blast Loading; Failure Modeling; Mesh-Based Method; Mesh-Free Method; Computational Cost.


Chen, S., Zang, M., Wang, D., Yoshimura, S., & Yamada, T. (2017). Numerical analysis of impact failure of automotive laminated glass: A review. Composites Part B: Engineering, 122, 47–60. doi:10.1016/j.compositesb.2017.04.007.

Teotia, M., & Soni, R. K. (2018). Applications of finite element modelling in failure analysis of laminated glass composites: A review. Engineering Failure Analysis, 94, 412–437. doi:10.1016/j.engfailanal.2018.08.016.

US7611773B2. (2009). Glass Composition and Laminated Glass. US Patent, Alexandria, United States.

Castori, G., & Speranzini, E. (2017). Structural analysis of failure behavior of laminated glass. Composites Part B: Engineering, 125, 89–99. doi:10.1016/j.compositesb.2017.05.062.

Wu, G., & Yang, J. M. (2005). The mechanical behavior of GLARE laminates for aircraft structures. Failure in Structural Materials, 57(1), 72–79. doi:10.1007/s11837-005-0067-4.

Vedrtnam, A. (2019). Novel treatment methods for improving fatigue behavior of laminated glass. Composites Part B: Engineering, 167, 180–198. doi:10.1016/j.compositesb.2018.12.037.

Kranzer, C., Gürke, G., & Mayrhofer, C. (2005). Testing of bomb resistant glazing systems. Experimental investigation of the time dependent deflection of blast loaded 7.5 mm laminated glass. Glass processing days (June 2005). Tampere, Finland.

Biolzi, L., Cattaneo, S., Orlando, M., Piscitelli, L. R., & Spinelli, P. (2018). Post-failure behavior of laminated glass beams using different interlayers. Composite Structures, 202, 578–589. doi:10.1016/j.compstruct.2018.03.009.

Lu, Y., Zhao, S., & Chen, S. (2023). Compressive buckling performance of multilayer laminated glass columns with different interlayers. Engineering Structures, 281. doi:10.1016/j.engstruct.2023.115701.

Schuster, M. (2022). Characterization of laminated safety glass interlayers: thermorheology, crystallinity and viscoelasticity. Technische Universität Darmstadt, 341. doi:10.26083/tuprints-00021741.

Rühl, A., Kolling, S., & Schneider, J. (2017). Characterization and modeling of poly(methyl methacrylate) and thermoplastic polyurethane for the application in laminated setups. Mechanics of Materials, 113, 102–111. doi:10.1016/j.mechmat.2017.07.018.

Kraus, M. A. (2019). Machine learning techniques for the material parameter identification of laminated glass in the intact and post-fracture state. Thesis, University of the Bundeswehr Munich, Neubiberg, Germany.

Chen, X., Rosendahl, P. L., Chen, S., & Schneider, J. (2021). On the delamination of polyvinyl butyral laminated glass: Identification of fracture properties from numerical modelling. Construction and Building Materials, 306(124827). doi:10.1016/j.conbuildmat.2021.124827.

Del Linz, P., Hooper, P. A., Arora, H., Wang, Y., Smith, D., Blackman, B. R. K., & Dear, J. P. (2017). Delamination properties of laminated glass windows subject to blast loading. International Journal of Impact Engineering, 105, 39–53. doi:10.1016/j.ijimpeng.2016.05.015.

Foraboschi, P. (2012). Analytical model for laminated-glass plate. Composites Part B: Engineering, 43(5), 2094–2106. doi:10.1016/j.compositesb.2012.03.010.

Baraldi, D., Cecchi, A., & Foraboschi, P. (2016). Broken tempered laminated glass: Non-linear discrete element modeling. Composite Structures, 140, 278–295. doi:10.1016/j.compstruct.2015.12.050.

Shahriari, M., & Saeidi Googarchin, H. (2020). Prediction of vehicle impact speed based on the post-cracking behavior of automotive PVB laminated glass: Analytical modeling and numerical cohesive zone modeling. Engineering Fracture Mechanics, 240. doi:10.1016/j.engfracmech.2020.107352.

Seyedalikhani, S., Shokrieh, M. M., & Shamaei-Kashani, A. R. (2020). A novel dynamic constitutive micromechanical model to predict the strain rate dependent mechanical behavior of glass/epoxy laminated composites. Polymer Testing, 82. doi:10.1016/j.polymertesting.2019.106292.

Biolzi, L., Casolo, S., Orlando, M., & Tateo, V. (2019). Modelling the response of a laminated tempered glass for different configurations of damage by a rigid body spring model. Engineering Fracture Mechanics, 218. doi:10.1016/j.engfracmech.2019.106596.

Malewski, A., Kozłowski, M., Podwórny, J., Środa, M., & Sumelka, W. (2023). Developments on Constitutive Material Model for Architectural Soda-Lime Silicate (SLS) Glass and Evaluation of Key Modelling Parameters. Materials, 16(1), 397. doi:10.3390/ma16010397.

Zhang, X., Hao, H., & Ma, G. (2015). Dynamic material model of annealed soda-lime glass. International Journal of Impact Engineering, 77, 108–119. doi:10.1016/j.ijimpeng.2014.11.016.

Balan, B. A., & Achintha, M. (2015). Assessment of Stresses in Float and Tempered Glass Using Eigenstrains. Experimental Mechanics, 55(7), 1301–1315. doi:10.1007/s11340-015-0036-y.

Nielsen, J. H., & Bjarrum, M. (2017). Deformations and strain energy in fragments of tempered glass: experimental and numerical investigation. Glass Structures and Engineering, 2(2), 133–146. doi:10.1007/s40940-017-0043-8.

Bonati, A., Pisano, G., & Royer Carfagni, G. (2020). Probabilistic considerations about the strength of laminated annealed float glass. Glass Structures and Engineering, 5(1), 27–40. doi:10.1007/s40940-019-00111-8.

Osnes, K., Børvik, T., & Hopperstad, O. S. (2018). Testing and modelling of annealed float glass under quasi-static and dynamic loading. Engineering Fracture Mechanics, 201, 107–129. doi:10.1016/j.engfracmech.2018.05.031.

Brokmann, C., Alter, C., & Kolling, S. (2023). A Methodology for Stochastic Simulation of Head Impact on Windshields. Applied Mechanics, 4(1), 179–190. doi:10.3390/applmech4010010.

Serafinavičius, T., Lebet, J. P., Louter, C., Lenkimas, T., & Kuranovas, A. (2013). Long-term laminated glass four point bending test with PVB, EVA and SG interlayers at different temperatures. Procedia Engineering, 57, 996–1004. doi:10.1016/j.proeng.2013.04.126.

Rivers, G., & Cronin, D. (2019). Influence of moisture and thermal cycling on delamination flaws in transparent armor materials: Thermoplastic polyurethane bonded glass-polycarbonate laminates. Materials and Design, 182(108026). doi:10.1016/j.matdes.2019.108026.

Parratt, M. (2016). Behaviour of Multi-Layered Laminated Glass under Blast Loading. Master Thesis, University of Toronto, Toronto, Canada.

Kuntsche, J., & Schneider, J. (2014). Mechanical behaviour of polymer interlayers in explosion resistant glazing. In Challenging Glass 4 and COST Action TU0905 Final Conference - Proceedings of the Challenging Glass 4 and Cost Action TU0905 Final Conference, 447–454. doi:10.1201/b16499-65.

Angelides, S. C. (2022). Blast Resilience of Glazed Façades: Towards a New Understanding of the Post-Fracture Behaviour of Laminated Glass. PhD Thesis, University of Cambridge. doi:10.17863/CAM.87476.

Biolzi, L., Cattaneo, S., Orlando, M., Piscitelli, L. R., & Spinelli, P. (2020). Constitutive relationships of different interlayer materials for laminated glass. Composite Structures, 244(112221). doi:10.1016/j.compstruct.2020.112221.

Zhang, L. H., Yao, X. H., Zang, S. G., & Han, Q. (2015). Temperature and strain rate dependent tensile behavior of a transparent polyurethane interlayer. Materials and Design, 65, 1181–1188. doi:10.1016/j.matdes.2014.08.054.

Biolzi, L., Cattaneo, S., & Rosati, G. (2010). Progressive damage and fracture of laminated glass beams. Construction and Building Materials, 24(4), 577–584. doi:10.1016/j.conbuildmat.2009.09.007.

Gao, W., Xiang, J., Chen, S., Yin, S., Zang, M., & Zheng, X. (2017). Intrinsic cohesive modeling of impact fracture behavior of laminated glass. Materials and Design, 127, 321–335. doi:10.1016/j.matdes.2017.04.059.

Alter, C., Kolling, S., & Schneider, J. (2017). A new failure criterion for laminated safety glass. 11th European LS-Dyna Conference, 9-11 May, 2017, Salzburg, Austria.

El-Sisi, A., Newberry, M., Knight, J., Salim, H., & Nawar, M. (2022). Static and high strain rate behavior of aged virgin PVB. Journal of Polymer Research, 29(2), 39. doi:10.1007/s10965-021-02876-5.

Chen, X., Chen, S., & Li, G. (2021). Failure Mode of Framed Polyvinyl-Butyral-Laminated Glass Subjected to Blast Loading. Tongji Daxue Xuebao/Journal of Tongji University, 49(11), 1565–1574. doi:10.11908/j.issn.0253-374x.20306.

Hidallana-Gamage, H. D., Thambiratnam, D. P., & Perera, N. J. (2014). Numerical modelling and analysis of the blast performance of laminated glass panels and the influence of material parameters. Engineering Failure Analysis, 45, 65–84. doi:10.1016/j.engfailanal.2014.06.013.

Wang, X. E., Yang, J., Liu, Q. F., Zhang, Y. M., & Zhao, C. (2017). A comparative study of numerical modelling techniques for the fracture of brittle materials with specific reference to glass. Engineering Structures, 152, 493–505. doi:10.1016/j.engstruct.2017.08.050.

Literature survey General (1985). A review of the literature on finite-element modelling of laminated composite plates. Composites, 16(4), 337. doi:10.1016/0010-4361(85)90318-0.

Jaśkowiec, J. (2015). Numerical Modeling Mechanical Delamination in Laminated Glass by XFEM. Procedia Engineering, 108, 293–300. doi:10.1016/j.proeng.2015.06.150.

Sun, X., Khaleel, M. A., & Davies, R. W. (2005). Modeling of Stone-impact Resistance of Monolithic Glass Ply Using Continuum Damage Mechanics. International Journal of Damage Mechanics, 14(2), 165–178. doi:10.1177/1056789505048601.

Ismail, J., Zaïri, F., Naït-Abdelaziz, M., Bouzid, S., & Azari, Z. (2011). Experimental and numerical investigations on erosion damage in glass by impact of small-sized particles. Wear, 271(5–6), 817–826. doi:10.1016/j.wear.2011.03.009.

Lenk, P., & Lambert, H. (2015). Practical aspects of finite-element analysis in structural glass design. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 168(7), 527–538. doi:10.1680/stbu.13.00104.

Gao, W., & Zang, M. (2014). The simulation of laminated glass beam impact problem by developing fracture model of spherical DEM. Engineering Analysis with Boundary Elements, 42, 2–7. doi:10.1016/j.enganabound.2013.11.011.

Wang, X., Yang, J., Pan, Z., Wang, F., Meng, Y., & Zhu, Y. (2021). Exploratory investigation into the post-fracture model of laminated tempered glass using combined Voronoi-FDEM approach. International Journal of Mechanical Sciences, 190, 105989. doi:10.1016/j.ijmecsci.2020.105989.

Nikbakt, S., Kamarian, S., & Shakeri, M. (2018). A review on optimization of composite structures Part I: Laminated composites. Composite Structures, 195, 158–185. doi:10.1016/j.compstruct.2018.03.063.

Zhou, Y., Sun, Y., Huang, T., & Cai, W. (2019). SPH-FEM simulation of impacted composite laminates with different layups. Aerospace Science and Technology, 95, 105469. doi:10.1016/j.ast.2019.105469.

Zhou, Y., Sun, Y., & Cai, W. (2019). Bird-striking damage of rotating laminates using SPH-CDM method. Aerospace Science and Technology, 84, 265–272. doi:10.1016/j.ast.2018.10.009.

Grimaldi, A., Sollo, A., Guida, M., & Marulo, F. (2013). Parametric study of a SPH high velocity impact analysis – A birdstrike windshield application. Composite Structures, 96, 616–630. doi:10.1016/j.compstruct.2012.09.037.

Spiller, K., Packer, J. A., Seica, M. V., & Yankelevsky, D. Z. (2016). Prediction of annealed glass window response to blast loading. International Journal of Impact Engineering, 88, 189–200. doi:10.1016/j.ijimpeng.2015.10.010.

Norville, H. S., & Conrath, E. J. (2001). Considerations for Blast-Resistant Glazing Design. Journal of Architectural Engineering, 7(3), 80–86. doi:10.1061/(asce)1076-0431(2001)7:3(80).

Bedon, C., Larcher, M., Bez, A., & Amadio, C. (2022). Numerical Analysis of TGU Windows under Blast - Glass-Shard Outlook. Challenging Glass 8: Conference on Architectural and Structural Applications of Glass, CGC 2022, 8. doi:10.47982/cgc.8.450.

Cao, K., Wang, Y., & Wang, Y. (2012). Effects of strain rate and temperature on the tension behavior of polycarbonate. Materials and Design, 38, 53–58. doi:10.1016/j.matdes.2012.02.007.

Jayaweera, G. C. S., Hidallana-Gamage, H. D., & Baleshan, B. (2022). Case Studies on Blast Behaviour of Glass Façades: Sri Lanka Easter Bombings. IEEE, 2022 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 1-6. doi:10.1109/mercon55799.2022.9906182.

Saflex. (2023). Saflex Clear Technical Datasheet. Eastman Chemical Company, Tennessee, United States. Available online: https://www.saflex.com/technical-documents (accessed on May 2023).

Huntsman. (2023). KRYSTALFLEX TPU Films for Safety Glazing Applications. Huntsman International LLC, Utah, United States. Available online: https://www.huntsman.com/products/detail/313/krystalflex (accessed on May 2023).

Zhang, X., & Hao, H. (2015). Experimental and numerical study of boundary and anchorage effect on laminated glass windows under blast loading. Engineering Structures, 90, 96–116. doi:10.1016/j.engstruct.2015.02.022.

Wang, K. G., Lea, P., & Farhat, C. (2015). A computational framework for the simulation of high-speed multi-material fluid-structure interaction problems with dynamic fracture. International Journal for Numerical Methods in Engineering, 104(7), 585–623. doi:10.1002/nme.4873.

Morison, C. (2007). The resistance of laminated glass to blast pressure loading and the coefficients for single degree of freedom analysis of laminated glass. Ph.D. Thesis, Cranfield University, Cranfield, United Kingdom.

Larcher, M., Solomos, G., Casadei, F., & Gebbeken, N. (2012). Experimental and numerical investigations of laminated glass subjected to blast loading. International Journal of Impact Engineering, 39(1), 42–50. doi:10.1016/j.ijimpeng.2011.09.006.

Del Linz, P., Hooper, P. A., Arora, H., Smith, D., Pascoe, L., Cormie, D., Blackman, B. R. K., & Dear, J. P. (2015). Reaction forces of laminated glass windows subject to blast loads. Composite Structures, 131, 193–206. doi:10.1016/j.compstruct.2015.04.050.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-018


  • There are currently no refbacks.

Copyright (c) 2023 MOHELDEEN HEJAZI, Ali Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.