A Mathematical Approach for Predicting Sufficient Separation Gap between Adjacent Buildings to Avoid Earthquake-Induced Pounding
Downloads
Doi: 10.28991/CEJ-2023-09-10-02
Full Text: PDF
[2] Jankowski, R. (2015). Pounding between Superstructure Segments in Multi-Supported Elevated Bridge with Three-Span Continuous Deck under 3D Non-Uniform Earthquake Excitation. Journal of Earthquake and Tsunami, 9(4), 1550012. doi:10.1142/S1793431115500128.
[3] Khatami, S. M., Naderpour, H., Barros, R. C., Jakubczyk-GaŠ‚czyńska, A., & Jankowski, R. (2019). Effective formula for impact damping ratio for simulation of earthquake-induced structural pounding. Geosciences (Switzerland), 9(8), 347. doi:10.3390/geosciences9080347.
[4] Abdel Raheem, S. E., Hayashikawa, T., & Dorka, U. (2011). Ground motion spatial variability effects on seismic response control of cable-stayed bridges. Earthquake Engineering and Engineering Vibration, 10(1), 37–49. doi:10.1007/s11803-011-0045-5.
[5] Abdel Raheem, S. E. (2009). Pounding mitigation and unseating prevention at expansion joints of isolated multi-span bridges. Engineering Structures, 31(10), 2345–2356. doi:10.1016/j.engstruct.2009.05.010.
[6] Luo, Y., Li, Y., Wang, X., & Lu, G. (2021). Influence of Restrainer Piers on the Seismic Performance of Long Bridges with Equal-Height Piers. Mathematical Problems in Engineering, 2021. doi:10.1155/2021/6651215.
[7] Rosenblueth, E., & Meli, R. (1986). The 1985 Mexico earthquake. Concrete international, 8(5), 23-34.
[8] Kasai, K., & Maison, B. F. (1997). Building pounding damage during the 1989 Loma Prieta earthquake. Engineering Structures, 19(3), 195–207. doi:10.1016/S0141-0296(96)00082-X.
[9] Anagnostopoulos, S. A. (1996, June). Building pounding re-examined: how serious a problem is it. Eleventh world conference on earthquake engineering, 23-28 June, 1996, Acapulco, Mexico.
[10] Lin, J., & Weng, C. (2002). A study on seismic pounding probability of buildings in Taipei metropolitan area. Journal of the Chinese Institute of Engineers, 25(2), 123–135. doi:10.1080/02533839.2002.9670687.
[11] Lin, C. C. J., Hung, H. H., Liu, K. Y., & Chai, J. F. (2010). Reconnaissance observation on bridge damage caused by the 2008 Wenchuan (China) earthquake. Earthquake Spectra, 26(4), 1057–1083. doi:10.1193/1.3479947.
[12] Kazemi, F., Miari, M., & Jankowski, R. (2021). Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs. Bulletin of Earthquake Engineering, 19(1), 317–343. doi:10.1007/s10518-020-00985-y.
[13] Cole, G., Dhakal, R., Carr, A. J., & Bull, D. (2010). Building pounding state of the art: Identifying structures vulnerable to pounding damage. 2010 New Zealand Society of Earthquake Engineerings (NZSEE) Conference, 26-28 March, 2010, Wellington, New Zealand.
[14] Sekkour, H., Belounar, L., Belounar, A., Boussem, F., & Fortas, L. (2022). A Triangular Shell Element Based on Higher-order Strains for the Analysis of Static and Free Vibration. Civil Engineering Journal, 8(10), 2096-2109. doi:10.28991/CEJ-2022-08-10-06.
[15] Efraimiadou, S., Hatzigeorgiou, G. D., & Beskos, D. E. (2013). Structural pounding between adjacent buildings subjected to strong ground motions. Part I: The effect of different structures arrangement. Earthquake Engineering & Structural Dynamics, 42(10), 1509-1528. doi:10.1002/eqe.2285.
[16] Raheem, S. E. A., Fooly, M. Y. M., Omar, M., & Zaher, A. K. A. (2019). Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment. Earthquake and Structures, 16(6), 715–726. doi:10.12989/eas.2019.16.6.715.
[17] Polycarpou, P. C., Papaloizou, L., & Komodromos, P. (2014). An efficient methodology for simulating earthquake-induced 3D pounding of buildings. Earthquake Engineering and Structural Dynamics, 43(7), 985–1003. doi:10.1002/eqe.2383.
[18] Leibovich, E., Rutenberg, A., & Yankelevsky, D. Z. (1996). On eccentric seismic pounding of symmetric buildings. Earthquake Engineering and Structural Dynamics, 25(3), 219–233. doi:10.1002/(SICI)1096-9845(199603)25:3<219::AID-EQE537>3.0.CO;2-H.
[19] Jankowski, R. (2008). Earthquake-induced pounding between equal height buildings with substantially different dynamic properties. Engineering Structures, 30(10), 2818–2829. doi:10.1016/j.engstruct.2008.03.006.
[20] Jankowski, R. (2010). Experimental study on earthquake-induced pounding between structural elements made of different building materials. Earthquake Engineering & Structural Dynamics, 39(3), 343–354. doi:10.1002/eqe.941.
[21] Kazemi, F., Mohebi, B., & Yakhchalian, M. (2020). Predicting the seismic collapse capacity of adjacent structures prone to pounding. Canadian Journal of Civil Engineering, 47(6), 663–677. doi:10.1139/cjce-2018-0725.
[22] Raheem, S. A., Fooly, M. Y., Shafy, A. A., Abbas, Y. A., Omar, M., Latif, M. M. S. A., & Mahmoud, S. (2018). Seismic pounding effects on adjacent buildings in series with different alignment configurations. Steel and Composite Structures, 28(3), 289-308. doi:10.12989/scs.2018.28.3.289.
[23] Anagnostopoulos, S. A. (1988). Pounding of buildings in series during earthquakes. Earthquake Engineering & Structural Dynamics, 16(3), 443–456. doi:10.1002/eqe.4290160311.
[24] Skrekas, P., Sextos, A., & Giaralis, A. (2014). Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings. Earthquake and Structures, 6(1), 71–87. doi:10.12989/eas.2014.6.1.071.
[25] SoŠ‚tysik, B., & Jankowski, R. (2013). Non-linear strain rate analysis of earthquake-induced pounding between steel buildings. International Journal of Earth Sciences and Engineering, 6(3), 429–433.
[26] Elwardany, H., Seleemah, A., & Jankowski, R. (2017). Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels. Engineering Structures, 144, 139–150. doi:10.1016/j.engstruct.2017.01.078.
[27] Khatami, S. M., Naderpour, H., Barros, R. C., Jakubczyk-GaŠ‚czyńska, A., & Jankowski, R. (2020). Determination of peak impact force for buildings exposed to structural pounding during earthquakes. Geosciences (Switzerland), 10(1), 18. doi:10.3390/geosciences10010018.
[28] Anagnostopoulos, S. A. (1995). Earthquake induced pounding: State of the art. Proceedings of the 10th European Conference on Earthquake Engineering, 28 August-2 September, 1995, Vienna, Austria.
[29] ICBO. (1997). Uniform building code. International Conference of Building Officials, California, United States.
[30] EN 1998-1:2004. (2004). Design of structures for earthquake resistance-part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, Belgium.
[31] IBC. (2009). International Building Code. International Code Council, Illinois, United States.
[32] Jeng, V., Kasai, K., & Maison, B. F. (1992). A Spectral Difference Method to Estimate Building Separations to Avoid Pounding. Earthquake Spectra, 8(2), 201–223. doi:10.1193/1.1585679.
[33] Penzien, J. (1997). Evaluation of building separation distance required to prevent pounding during strong earthquakes. Earthquake Engineering & Structural Dynamics, 26(8), 849–858. doi:10.1002/(SICI)1096-9845(199708)26:8<849::AID-EQE680>3.0.CO;2-M.
[34] Lopez-Garcia, D., & Soong, T. T. (2009). Assessment of the separation necessary to prevent seismic pounding between linear structural systems. Probabilistic Engineering Mechanics, 24(2), 210–223. doi:10.1016/j.probengmech.2008.06.002.
[35] Filiatrault, A., & Cervantes, M. (1995). Separation between buildings to avoid pounding during earthquakes. Canadian Journal of Civil Engineering, 22(1), 164–179. doi:10.1139/l95-015.
[36] Garcia, D. L. (2004). Separation between adjacent nonlinear structures for prevention of seismic pounding. Proceedings of the 13th World Conference on Earthquake Engineering, 1-6 August, 2004, Vancouver, Canada.
[37] Hong, H. P., Wang, S. S., & Hong, P. (2003). Critical building separation distance in reducing pounding risk under earthquake excitation. Structural Safety, 25(3), 287–303. doi:10.1016/s0167-4730(02)00080-2.
[38] Wang, S. S., & Hong, H. P. (2006). Quantiles of critical separation distance for nonstationary seismic excitations. Engineering Structures, 28(7), 985–991. doi:10.1016/j.engstruct.2005.11.003.
[39] Khatami, S. M., Naderpour, H., Barros, R. C., & Jankowski, R. (2019). Verification of Formulas for Periods of Adjacent Buildings Used to Assess Minimum Separation Gap Preventing Structural Pounding during Earthquakes. Advances in Civil Engineering, 2019. doi:10.1155/2019/9714939.
[40] Naderpour, H., Khatami, S. M., & Barros, R. C. (2017). Prediction of critical distance between two MDOF systems subjected to seismic excitation in terms of artificial neural networks. Periodica Polytechnica Civil Engineering, 61(3), 516–529. doi:10.3311/PPci.9618.
[41] Shrestha, B. (2013). Effects of separation distance and nonlinearity on pounding response of adjacent structures. International Journal of Civil and Structural Engineering, 3(3), 603.
[42] Favvata, M. J. (2017). Minimum required separation gap for adjacent RC frames with potential inter-story seismic pounding. Engineering Structures, 152, 643–659. doi:10.1016/j.engstruct.2017.09.025.
[43] Barbato, M., & Tubaldi, E. (2013). A probabilistic performance-based approach for mitigating the seismic pounding risk between adjacent buildings. Earthquake Engineering and Structural Dynamics, 42(8), 1203–1219. doi:10.1002/eqe.2267.
[44] Abdel Raheem, S. E. (2014). Mitigation measures for earthquake induced pounding effects on seismic performance of adjacent buildings. Bulletin of Earthquake Engineering, 12(4), 1705–1724. doi:10.1007/s10518-014-9592-2.
[45] Khatami, S. M., Naderpour, H., Mortezaei, A., Razavi, S. M. N., Lasowicz, N., & Jankowski, R. (2021). Effective gap size index for determination of optimum separation distance preventing pounding between buildings during earthquakes. Applied Sciences (Switzerland), 11(5), 1–15. doi:10.3390/app11052322.
[46] Tena-Colunga, A., & Sánchez-Ballinas, D. (2022). Required building separations and observed seismic pounding on the soft soils of Mexico City. Soil Dynamics and Earthquake Engineering, 161, 107413, 1-33. doi:10.1016/j.soildyn.2022.107413.
[47] Kamal, M., & Inel, M. (2022). Simplified approaches for estimation of required seismic separation distance between adjacent reinforced concrete buildings. Engineering Structures, 252, 113610. doi:10.1016/j.engstruct.2021.113610.
[48] Kamal, M., & Inel, M. (2022). A new equation for prediction of seismic gap between adjacent buildings located on different soil types. Journal of Building Engineering, 57, 104784. doi:10.1016/j.jobe.2022.104784.
[49] AS1170.4. (2007). Structural Design Actions Part 4: Earthquake Actions in Australia. Standards Australia, Sydney, Australia.
[50] Jaradat, Y., Sobhi, P., & Far, H. (2023). An investigation into adequacy of separation gap to preclude earthquake-induced pounding. Structural Engineering and Mechanics, 86(1), 29–48. doi:10.12989/sem.2023.86.1.029.
[51] Jaradat, Y., Far, H., & Saleh, A. (2021). Examining the adequacy of separation gaps between adjacent buildings under near-field and far-field earthquakes. The Thirteenth International Conference on Earthquake Resistant Engineering Structures, 26–28 May, 2021.
[52] AS/NZS3678. (2011). Structural steel”Hot-rolled plates, floorplates and slabs. Standards Australia, Sydney, Australia.
[53] Tabatabaiefar, S., Fatahi, B., & Samali, B. (2014). Numerical and experimental investigations on seismic response of building frames under influence of soil-structure interaction. Advances in Structural Engineering, 17(1), 109–130. doi:10.1260/1369-4332.17.1.109.
[54] Tabatabaiefar, H. R., & Mansoury, B. (2015). Detail design, building and commissioning of tall building structural models for experimental shaking table tests. The Structural Design of Tall and Special Buildings, 25(8), 357–374. doi:10.1002/tal.1262.
[55] Tabatabaiefar, H. R. (2016). Detail design and construction procedure of laminar soil containers for experimental shaking table tests. International Journal of Geotechnical Engineering, 10(4), 328–336. doi:10.1080/19386362.2016.1145419.
[56] Chopra A. (2007). Dynamics of Structures (3rd Ed.). Prentice Hall, New Jersey, United States.
[57] Saleh, A., Far, H., & Mok, L. (2018). Effects of different support conditions on experimental bending strength of thin walled cold formed steel storage upright frames. Journal of Constructional Steel Research, 150, 1–6. doi:10.1016/j.jcsr.2018.07.031.
[58] Jaradat, Y., & Far, H. (2023). Impact Stiffness of Linear Viscoelastic Model for Seismic Pounding Simulation: An Experimental Evaluation. Civil Engineering Journal (Iran), 9(6), 1289–1311. doi:10.28991/CEJ-2023-09-06-01.
[59] Kramer S. L. (1996). Geotechnical earthquake engineering. Prentice Hall, New Jersey, United States.
[60] K-karamodin, A., & H-Kazemi, H. (2010). Semi-active control of structures using neuro-predictive algorithm for MR dampers. Structural Control and Health Monitoring, 17(3), 237–253. doi:10.1002/stc.278.
[61] Computers and Structures INC (CSI). (2000). SAP2000 Integrated Software for Structural Analysis and Design. Computers and Structures Inc., Berkeley, United States.
[62] Jaradat, Y., Far, H., & Mortazavi, M. (2022). Experimental Evaluation of Theoretical Impact Models for Seismic Pounding. Journal of Earthquake Engineering, 2022, 1–21. doi:10.1080/13632469.2022.2131654.
[63] Jaradat Y, & Far H. (2021). Project Title: Seismic Behaviour of High-rise and Mid-rise Buildings. University of Technology Sydney, Australia
[64] Far, H., & Flint, D. (2017). Significance of using isolated footing technique for residential construction on expansive soils. Frontiers of Structural and Civil Engineering, 11(1), 123–129. doi:10.1007/s11709-016-0372-8.
[65] Jaradat, Y., & Far, H. (2021). Optimum stiffness values for impact element models to determine pounding forces between adjacent buildings. Structural Engineering and Mechanics, 77(2), 293–304. doi:10.12989/sem.2021.77.2.293.
[66] Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models. McGraw-Hill, New York, United States.
[67] Far, C., & Far, H. (2019). Improving energy efficiency of existing residential buildings using effective thermal retrofit of building envelope. Indoor and Built Environment, 28(6), 744–760. doi:10.1177/1420326X18794010.
[68] Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Association, 88(422), 486–494. doi:10.1080/01621459.1993.10476299.
[69] Cox, D. R. (1984). Interaction. International Statistical Review, 52(1), 1-24. doi:10.2307/1403235.
[70] Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48, 500–506. doi:10.1016/j.proeng.2012.09.545.
[71] Jeng, V., Kasai, K., & Jagiasi, A. (1992). The separation to avoid seismic pounding. Proceedings of the Tenth World Conference on Earthquake Engineering, 19-24 July, Madrid, Spain.
[72] Kasai, K., Jagiasi, A. R., & Jeng, V. (1996). Inelastic Vibration Phase Theory for Seismic Pounding Mitigation. Journal of Structural Engineering, 122(10), 1136–1146. doi:10.1061/(asce)0733-9445(1996)122:10(1136).
[73] Denham, D. (1992). Earthquake attack in the Sydney basin: What is the risk? Exploration Geophysics, 23(4), 579–587. doi:10.1071/EG992579.
[74] Zhang, X., & Far, H. (2022). Effects of dynamic soil-structure interaction on seismic behaviour of high-rise buildings. Bulletin of Earthquake Engineering, 20(7), 3443–3467. doi:10.1007/s10518-021-01176-z.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
