Behavior of Steel–Lightweight Self Compacting Concrete Composite Beams with Various Degrees of Shear Interaction
Abstract
Doi: 10.28991/CEJ-2023-09-11-04
Full Text: PDF
Keywords
References
Shamass, R., & Cashell, K. A. (2017). Behaviour of Composite Beams Made Using High Strength Steel. Structures, 12, 88–101. doi:10.1016/j.istruc.2017.08.005.
Wang, B., Huang, Q., Liu, X., & Li, W. (2018). Experimental investigation of steel-concrete composite beams with different degrees of shear connection under monotonic and fatigue loads. Advances in Structural Engineering, 21(2), 227–240. doi:10.1177/1369433217717121.
Vasdravellis, G., & Uy, B. (2014). Shear Strength and Moment-Shear Interaction in Steel-Concrete Composite Beams. Journal of Structural Engineering, 140(11), 1–11. doi:10.1061/(asce)st.1943-541x.0001008.
Zhou, M., Zhang, J., Zhong, J., & Zhao, Y. (2016). Shear Stress Calculation and Distribution in Variable Cross Sections of Box Girders with Corrugated Steel Webs. Journal of Structural Engineering, 142(6), 1–10. doi:10.1061/(asce)st.1943-541x.0001477.
Thirumalaiselvi, A., Anandavalli, N., Rajasankar, J., & Iyer, N. R. (2016). Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading. Steel and Composite Structures, 20(1), 167–184. doi:10.12989/scs.2016.20.1.167.
Mark Lawson, R., Lam, D., Aggelopoulos, E. S., & Nellinger, S. (2017). Serviceability performance of steel–concrete composite beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 170(2), 98–114. doi:10.1680/jstbu.16.00048.
Saleh, S., & Fareed H. AlMosawi, F. H. A. (2018). Behavior of Steel-Normal and High Strength Concrete Composite Beams With Partial Shear Interactionbehavior of Steel-Normal and High Strength Concrete Composite Beams With Partial Shear Interaction. Kufa Journal of Engineering, 9(1), 175–190. doi:10.30572/2018/kje/090112.
Choi, W., Choi, Y., & Yoo, S. W. (2018). Flexural Design and Analysis of Composite Beams with Inverted-T Steel Girder with Ultrahigh Performance Concrete Slab. Advances in Civil Engineering, 2018. doi:10.1155/2018/1356027.
Majeed, F. H. (2018). Behavior of Steel- Lightweight Concrete Composite Beams with Partial Shear Interaction. Journal of University of Babylon for Engineering Sciences, 26(2), 20–34. doi:10.29196/jub.v26i2.380.
Ribeiro Neto, J. G., Vieira, G. S., & Zoccoli, R. de O. (2020). Experimental analysis of the structural behavior of different types of shear connectors in steel-concrete composite beams. Revista IBRACON de Estruturas e Materiais, 13(6), 1–17. doi:10.1590/s1983-41952020000600010.
Zhang, J., Hu, X., Fu, W., Du, H., Sun, Q., & Zhang, Q. (2020). Experimental and theoretical study on longitudinal shear behavior of steel-concrete composite beams. Journal of Constructional Steel Research, 171. doi:10.1016/j.jcsr.2020.106144.
Oliveira, V. M. de, Rossi, A., Ferreira, F. P. V., & Martins, C. H. (2022). Stability behavior of steel–concrete composite cellular beams subjected to hogging moment. Thin-Walled Structures, 173, 108987. doi:10.1016/j.tws.2022.108987.
Yoo, S. W., & Choo, J. F. (2016). Evaluation of the flexural behavior of composite beam with inverted-T steel girder and steel fiber reinforced ultra-high performance concrete slab. Engineering Structures, 118, 1-15. doi:10.1016/j.engstruct.2016.03.052.
Jain, A., Choudhary, R., Gupta, R., & Chaudhary, S. (2020). Abrasion resistance and sorptivity characteristics of SCC containing granite waste. Materials Today: Proceedings, 27, 524-528. doi:10.1016/j.matpr.2019.11.318.
Sadrmomtazi, A., Dolati-Milehsara, S., Lotfi-Omran, O., & Sadeghi-Nik, A. (2016). The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. Journal of Cleaner Production, 112, 2363-2373. doi:10.1016/j.jclepro.2015.09.107.
Ismail, M. K., & Hassan, A. A. (2022). Performance of lightweight SCC beams strengthened with rubberized engineered cementitious composite in shear. Engineering Structures, 252, 113687. doi:10.1016/j.engstruct.2021.113687.
Uysal, M., & Tanyildizi, H. (2011). Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network. Construction and Building Materials, 25(11), 4105-4111. doi:0.1016/j.conbuildmat.2010.11.108.
Afshoon, I., Miri, M., & Mousavi, S. R. (2023). Comprehensive experimental and numerical modeling of strength parameters of eco-friendly steel fiber reinforced SCC containing coarse copper slag aggregates. Construction and Building Materials, 367, 130304. doi:10.1016/j.conbuildmat.2023.130304.
Li, J., Chen, Y., & Wan, C. (2017). A mix-design method for lightweight aggregate self-compacting concrete based on packing and mortar film thickness theories. Construction and Building Materials, 157, 621–634. doi:10.1016/j.conbuildmat.2017.09.141.
Yu, Z., Tang, R., Cao, P., Huang, Q., Xie, X., & Shi, F. (2019). Multi-axial test and failure criterion analysis on self-compacting lightweight aggregate concrete. Construction and Building Materials, 215, 786–798. doi:10.1016/j.conbuildmat.2019.04.236.
Lv, J., Zhou, T., Du, Q., & Li, K. (2020). Experimental and analytical study on uniaxial compressive fatigue behavior of self-compacting rubber lightweight aggregate concrete. Construction and Building Materials, 237, 117623. doi:10.1016/j.conbuildmat.2019.117623.
Li, J., Zhao, E., Niu, J., & Wan, C. (2021). Study on mixture design method and mechanical properties of steel fiber reinforced self-compacting lightweight aggregate concrete. Construction and Building Materials, 267, 121019. doi:10.1016/j.conbuildmat.2020.121019.
Ting, T. Z. H., Rahman, M. E., Lau, H. H., & Ting, M. Z. Y. (2019). Recent development and perspective of lightweight aggregates based self-compacting concrete. Construction and Building Materials, 201, 763–777. doi:10.1016/j.conbuildmat.2018.12.128.
Lo, T. Y., Tang, P. W. C., Cui, H. Z., & Nadeem, A. (2007). Comparison of workability and mechanical properties of self-compacting lightweight concrete and normal self-compacting concrete. Materials Research Innovations, 11(1), 16–17. doi:10.1179/143307507X196239.
Najim, K. B., & Hall, M. R. (2010). A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Construction and Building Materials, 24(11), 2043–2051. doi:10.1016/j.conbuildmat.2010.04.056.
Gopi, R., Revathi, V., & Kanagaraj, D. (2015). Light expanded clay aggregate and fly ash aggregate as self-curing agents in self-compacting concrete. Asian Journal of Civil Engineering, 16(7), 1025–1035.
Anwar Hossain, K. M. (2004). Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research, 34(2), 283–291. doi:10.1016/j.cemconres.2003.08.004.
Heiza, K., Eid, F., & Masoud, T. (2017). Behavior of Reinforced Concrete Slabs Cast with Light Weight Self Compacting Concrete. Journal of Engineering Science and Military Technologies, 17(17), 1–12. doi:10.21608/ejmtc.2017.21604.
DOI: 10.28991/CEJ-2023-09-11-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Bayadir Abed Hadi, Samoel Mahdi Saleh
This work is licensed under a Creative Commons Attribution 4.0 International License.