An Evaluative Review of Recycled Waste Material Utilization in High-Performance Concrete

Al Mashhadani D. A. Jasim, Leong Sing Wong, Sih Ying Kong, Ahmed W. Al-Zand, Midhin A. K. Midhin


The disposal of waste materials and their adverse effects on the environment have become a worldwide concern, disturbing the fragile ecological equilibrium. With growing awareness of sustainability in the construction industry, it is of great importance to recycle waste materials for producing high-performance concrete (HPC). This aligns with the twelfth Sustainable Development Goal (SDG) of the United Nations, emphasizing responsible production and consumption, especially concerning the production of HPC using waste materials and energy-efficient methods. The review evaluates the purposeful utilization of recycled waste materials to improve the engineering characteristics of HPC, taking into consideration pertinent literature. It encompasses a comparative evaluation of strength development, water absorption, microstructures, and x-ray diffraction (XRD) analyses of HPC manufactured with different types of recycled waste materials. The key result of the review showed that using incinerated bottom ash (IBA) below 25% and incorporating 40% copper slag can enhance HPC’s mechanical performance. Additionally, recycled coarse aggregate (RCA) can replace up to 50% of conventional aggregate in self-compacting HPC with minimal impact on durability properties. In HPC cement substitution research, fly ash, silica fume, and metakaolin are prominent due to their availability, with fly ash showing remarkable durability when used as a 15% cement replacement. This thorough review offers valuable insights for optimizing the utilization of recycled waste materials in the development of environmentally friendly HPC.


Doi: 10.28991/CEJ-2023-09-11-020

Full Text: PDF


High-Performance Concrete; Energy-Efficient; Recycled Waste Materials; Strength Development; Water Absorption; Microstructures; X-Ray Diffraction.


Esquinas, A. R., Ledesma, E. F., Otero, R., Jiménez, J. R., & Fernández, J. M. (2018). Mechanical behaviour of self-compacting concrete made with non-conforming fly ash from coal-fired power plants. Construction and Building Materials, 182, 385–398. doi:10.1016/j.conbuildmat.2018.06.094.

Aslani, F., Ma, G., Yim Wan, D. L., & Muselin, G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553–566. doi:10.1016/j.jclepro.2018.02.074.

de Brito, J., & Kurda, R. (2021). The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 281, 123558. doi:10.1016/j.jclepro.2020.123558.

Wong, L. S., Oweida, A. F. M., Kong, S. Y., Iqbal, D. M., & Regunathan, P. (2020). The surface coating mechanism of polluted concrete by Candida ethanolica induced calcium carbonate mineralization. Construction and Building Materials, 257, 119482. doi:10.1016/j.conbuildmat.2020.119482.

Wong, L. S., Chandran, S. N., Rajasekar, R. R., & Kong, S. Y. (2022). Pozzolanic characterization of waste newspaper ash as a supplementary cementing material of concrete cylinders. Case Studies in Construction Materials, 17, 1342. doi:10.1016/j.cscm.2022.e01342.

Şanal, İ. (2018). Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete. Greenhouse Gases: Science and Technology, 8(2), 366–378. doi:10.1002/ghg.1748.

Zidol, A., Tognonvi, M. T., & Tagnit-Hamou, A. (2021). Concrete incorporating glass powder in aggressive environments. ACI Materials Journal, 118(2), 43–52. doi:10.14359/51729326.

Hamada, H. M., Skariah Thomas, B., Tayeh, B., Yahaya, F. M., Muthusamy, K., & Yang, J. (2020). Use of oil palm shell as an aggregate in cement concrete: A review. Construction and Building Materials, 265, 120357. doi:10.1016/j.conbuildmat.2020.120357.

Hamada, H. M., Tayeh, B. A., Al-Attar, A., Yahaya, F. M., Muthusamy, K., & Humada, A. M. (2020). The present state of the use of eggshell powder in concrete: A review. Journal of Building Engineering, 32, 101583. doi:10.1016/j.jobe.2020.101583.

Zhang, W., Liu, X., Huang, Y., & Tong, M. N. (2022). Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars. Archives of Civil and Mechanical Engineering, 22(4), 1–20. doi:10.1007/s43452-022-00493-7.

zhang, W., & Huang, Y. (2022). Three-dimensional numerical investigation of mixed-mode debonding of FRP-concrete interface using a cohesive zone model. Construction and Building Materials, 350, 128818. doi:10.1016/j.conbuildmat.2022.128818.

Huang, H., Huang, M., Zhang, W., Pospisil, S., & Wu, T. (2020). Experimental Investigation on Rehabilitation of Corroded RC Columns with BSP and HPFL under Combined Loadings. Journal of Structural Engineering, 146(8), 4020157. doi:10.1061/(asce)st.1943-541x.0002725.

Hu, Z., Shi, T., Cen, M., Wang, J., Zhao, X., Zeng, C., Zhou, Y., Fan, Y., Liu, Y., & Zhao, Z. (2022). Research progress on lunar and Martian concrete. Construction and Building Materials, 343, 128117. doi:10.1016/j.conbuildmat.2022.128117.

Yuan, J., Lei, D., Shan, Y., Tong, H., Fang, X., & Zhao, J. (2022). Direct Shear Creep Characteristics of Sand Treated with Microbial-Induced Calcite Precipitation. International Journal of Civil Engineering, 20(7), 763–777. doi:10.1007/s40999-021-00696-8.

Lan, Y., Zheng, B., Shi, T., Ma, C., Liu, Y., & Zhao, Z. (2022). Crack resistance properties of carbon nanotube-modified concrete. Magazine of Concrete Research, 74(22), 1165–1175. doi:10.1680/jmacr.21.00227.

Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D., & Li, Y. (2022). Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation. Soil Dynamics and Earthquake Engineering, 161, 107419. doi:10.1016/j.soildyn.2022.107419.

Shi, T., Liu, Y., Zhang, Y., Lan, Y., Zhao, Q., Zhao, Y., & Wang, H. (2022). Calcined Attapulgite Clay as Supplementary Cementing Material: Thermal Treatment, Hydration Activity and Mechanical Properties. International Journal of Concrete Structures and Materials, 16(1), 1–10. doi:10.1186/s40069-022-00499-8.

Zhang, C., & Ali, A. (2021). The advancement of seismic isolation and energy dissipation mechanisms based on friction. Soil Dynamics and Earthquake Engineering, 146, 106746. doi:10.1016/j.soildyn.2021.106746.

Gong, P., Wang, D., Zhang, C., Wang, Y., Jamili-Shirvan, Z., Yao, K., & Wang, X. (2022). Corrosion behavior of TiZrHfBeCu(Ni) high-entropy bulk metallic glasses in 3.5 wt. % NaCl. NPJ Materials Degradation, 6(1), 1–14. doi:10.1038/s41529-022-00287-5.

Sharma, D., Sharma, S., & Goyal, A. (2016). Utilization of waste foundry slag and alccofine for developing high strength concrete. International Journal of Electrochemical Science, 11(4), 3190–3205. doi:10.20964/110403190.

ACI 363R-92. (1992). Report on High-Strength Concrete. Reported by ACI Committee 363, American Concrete Institute, Detroit, United States.

Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. doi:10.1016/j.cemconcomp.2008.12.010.

Allwood, J. M., Cullen, J. M., & Milford, R. L. (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental Science and Technology, 44(6), 1888–1894. doi:10.1021/es902909k.

Ali, M. B., Saidur, R., & Hossain, M. S. (2011). A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews, 15(5), 2252–2261. doi:10.1016/j.rser.2011.02.014.

El Mir, A., & Nehme, S. G. (2017). Utilization of industrial waste perlite powder in self-compacting concrete. Journal of Cleaner Production, 156, 507–517. doi:10.1016/j.jclepro.2017.04.103.

Reddy, C. S., Ratnasai, K. V., Rathish Kumar, P., & Rajesh Kumar, P. (2013). Recycled aggregate based self-compacting concrete (RASCC) for structural applications. Technical Paper Presented in RN Raikar Memorial International Conference; India Chapter of American Concrete Institute (ICACI), December, 20-21, 2013, Mumbai, India.

Zhang, P., Wan, J., Wang, K., & Li, Q. (2017). Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review. Construction and Building Materials, 148, 648–658. doi:10.1016/j.conbuildmat.2017.05.059.

Randl, N., Steiner, T., Ofner, S., Baumgartner, E., & Mészöly, T. (2014). Development of UHPC mixtures from an ecological point of view. Construction and Building Materials, 67(PART C), 373–378. doi:10.1016/j.conbuildmat.2013.12.102.

Wee, T. H., Matsunaga, Y., Watanabe, Y., & Sakai, E. (1995). Microstructure and strength properties of high strength concretes containing various mineral admixtures. Cement and Concrete Research, 25(4), 715–720. doi:10.1016/0008-8846(95)00061-G.

Baker, M. A., & Ismael, N. S. (2008). Using of Waste Materials for Production of High Performance Concrete. Journal of Techniques, 21(4).

Yuliarti, K., Susilorini, R., & Aboubakr, A. (2015). Properties of Ultra High Performance Concrete. Proceedings of International Conference on Concrete and Infrastructure 2015, 28-30 October, 2015, Semarang, Indonesia.

Meyer, C., Vishwakarma, V., Xie, X., Gou, Z., & Lawrence, T. (2002). Concrete for the new century. Association of New York City Concrete Producers Spring/Summer, New York, United States.

El-Abbasy, A. A. (2022). Production, behaviour and mechanical properties of ultra-high-performance fiber concrete – A comprehensive review. Case Studies in Construction Materials, 17, 1637. doi:10.1016/j.cscm.2022.e01637.

Gong, J., Ma, Y., Fu, J., Hu, J., Ouyang, X., Zhang, Z., & Wang, H. (2022). Utilization of fibers in ultra-high performance concrete: A review. Composites Part B: Engineering, 241, 109995. doi:10.1016/j.compositesb.2022.109995.

Wen, C., Zhang, P., Wang, J., & Hu, S. (2022). Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: A review. Journal of Building Engineering, 52, 104370. doi:10.1016/j.jobe.2022.104370.

Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, 1149. doi:10.1016/j.cscm.2022.e01149.

Ahmed, K. S., & Rana, L. R. (2023). Fresh and hardened properties of concrete containing recycled waste glass: A review. Journal of Building Engineering, 70, 1063127. doi:10.1016/j.jobe.2023.106327.

Tayeh, B. A., Saffar, D. M. A., & Alyousef, R. (2020). The Utilization of Recycled Aggregate in High Performance Concrete: A Review. Journal of Materials Research and Technology, 9(4), 8469–8481. doi:10.1016/j.jmrt.2020.05.126.

Salas_Montoya, A., Chung, C. W., & Mira_Rada, B. E. (2023). Interaction effect of recycled aggregate type, moisture state, and mixing process on the properties of high-performance concretes. Case Studies in Construction Materials, 18, 2208. doi:10.1016/j.cscm.2023.e02208.

Alyaseen, A., Poddar, A., Alahmad, H., Kumar, N., & Sihag, P. (2023). High-performance self-compacting concrete with recycled coarse aggregate: comprehensive systematic review on mix design parameters. Journal of Structural Integrity and Maintenance, 8(3), 161–178. doi:10.1080/24705314.2023.2211850.

Hamada, H., Abed, F., Alattar, A., Yahaya, F., Tayeh, B., & Aisheh, Y. I. A. (2023). Influence of palm oil fuel ash on the high strength and ultra-high performance concrete: A comprehensive review. Engineering Science and Technology, an International Journal, 45, 101492. doi:10.1016/j.jestch.2023.101492.

Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K., & Le, T. A. (2022). Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production, 375, 133939. doi:10.1016/j.jclepro.2022.133939.

Su, W., Liu, J., Liu, L., Chen, Z., & Shi, C. (2023). Progresses of high-performance coral aggregate concrete (HPCAC): A review. Cement and Concrete Composites, 140, 105059. doi:10.1016/j.cemconcomp.2023.105059.

Abed, M., & Nemes, R. (2019). Long-term durability of self-compacting high-performance concrete produced with waste materials. Construction and Building Materials, 212, 350–361. doi:10.1016/j.conbuildmat.2019.04.004.

Shen, P., Zheng, H., Xuan, D., Lu, J. X., & Poon, C. S. (2020). Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete. Cement and Concrete Composites, 114, 103814. doi:10.1016/j.cemconcomp.2020.103814.

Malkhare, S. S., & Pujari, A. B. (2018). To Study the Performance of Copper Slag As Partial or Fully Replacement to Fine Aggregates in Concrete. International Journal of Research & Review, 5(5), 102.

Gonzalez-Corominas, A., & Etxeberria, M. (2014). Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates. Construction and Building Materials, 68, 618–626. doi:10.1016/j.conbuildmat.2014.07.016.

Tahwia, A. M., Essam, A., Tayeh, B. A., & Elrahman, M. A. (2022). Enhancing sustainability of ultra-high performance concrete utilizing high-volume waste glass powder. Case Studies in Construction Materials, 17, 1648. doi:10.1016/j.cscm.2022.e01648.

Amin, M., Tayeh, B. A., & Agwa, I. S. (2020). Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete. Journal of Cleaner Production, 273, 123073. doi:10.1016/j.jclepro.2020.123073.

Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra-high performance concrete. Construction and Building Materials, 25(4), 2030–2035. doi:10.1016/j.conbuildmat.2010.11.046.

Dixit, A., Verma, A., & Pang, S. D. (2021). Dual waste utilization in ultra-high performance concrete using biochar and marine clay. Cement and Concrete Composites, 120, 104049. doi:10.1016/j.cemconcomp.2021.104049.

Davraz, M., Ceylan, H., Topçu, İ. B., & Uygunoğlu, T. (2018). Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Construction and Building Materials, 165, 494–503. doi:10.1016/j.conbuildmat.2018.01.043.

Xu, K., Huang, W., Zhang, L., Fu, S., Chen, M., Ding, S., & Han, B. (2021). Mechanical properties of low-carbon ultrahigh-performance concrete with ceramic tile waste powder. Construction and Building Materials, 287, 123036. doi:10.1016/j.conbuildmat.2021.123036.

AlKhatib, A., Maslehuddin, M., & Al-Dulaijan, S. U. (2020). Development of high performance concrete using industrial waste materials and nano-silica. Journal of Materials Research and Technology, 9(3), 6696–6711. doi:10.1016/j.jmrt.2020.04.067.

Wang, J., Mu, M., & Liu, Y. (2018). Recycled cement. Construction and Building Materials, 190, 1124–1132. doi:10.1016/j.conbuildmat.2018.09.181.

Li, Y., Zeng, X., Zhou, J., Shi, Y., Umar, H. A., Long, G., & Xie, Y. (2021). Development of an eco-friendly ultra-high performance concrete based on waste basalt powder for Sichuan-Tibet Railway. Journal of Cleaner Production, 312, 127775. doi:10.1016/j.jclepro.2021.127775.

Yoo, D. Y., You, I., & Zi, G. (2021). Effects of waste liquid–crystal display glass powder and fiber geometry on the mechanical properties of ultra-high-performance concrete. Construction and Building Materials, 266, 120938. doi:10.1016/j.conbuildmat.2020.120938.

Abdellatief, M., AL-Tam, S. M., Elemam, W. E., Alanazi, H., Elgendy, G. M., & Tahwia, A. M. (2023). Development of ultra-high-performance concrete with low environmental impact integrated with metakaolin and industrial wastes. Case Studies in Construction Materials, 18, 1724. doi:10.1016/j.cscm.2022.e01724.

Yu, L., & Wu, R. (2020). Using graphene oxide to improve the properties of ultra-high-performance concrete with fine recycled aggregate. Construction and Building Materials, 259, 120657. doi:10.1016/j.conbuildmat.2020.120657.

Liu, T., Wei, H., Zou, D., Zhou, A., & Jian, H. (2020). Utilization of waste cathode ray tube funnel glass for ultra-high performance concrete. Journal of Cleaner Production, 249, 119333. doi:10.1016/j.jclepro.2019.119333.

Suzuki, M., Seddik Meddah, M., & Sato, R. (2009). Use of porous ceramic waste aggregates for internal curing of high-performance concrete. Cement and Concrete Research, 39(5), 373–381. doi:10.1016/j.cemconres.2009.01.007.

Afshinnia, K., & Rangaraju, P. R. (2016). Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Construction and Building Materials, 117, 263–272. doi:10.1016/j.conbuildmat.2016.04.072.

Qian, D., Yu, R., Shui, Z., Sun, Y., Jiang, C., Zhou, F., Ding, M., Tong, X., & He, Y. (2020). A novel development of green ultra-high performance concrete (UHPC) based on appropriate application of recycled cementitious material. Journal of Cleaner Production, 261, 121231. doi:10.1016/j.jclepro.2020.121231.

Faried, A. S., Mostafa, S. A., Tayeh, B. A., & Tawfik, T. A. (2021). Mechanical and durability properties of ultra-high performance concrete incorporated with various nano waste materials under different curing conditions. Journal of Building Engineering, 43, 102569. doi:10.1016/j.jobe.2021.102569.

Leng, Y., Rui, Y., Zhonghe, S., Dingqiang, F., Jinnan, W., Yonghuan, Y., Qiqing, L., & Xiang, H. (2023). Development of an environmental Ultra-High Performance Concrete (UHPC) incorporating carbonated recycled coarse aggregate. Construction and Building Materials, 362, 129657. doi:10.1016/j.conbuildmat.2022.129657.

Feng, J., Yang, F., & Qian, S. (2021). Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification. Construction and Building Materials, 269, 121249. doi:10.1016/j.conbuildmat.2020.121249.

Shen, P., Sun, Y., Liu, S., Jiang, Y., Zheng, H., Xuan, D., Lu, J., & Poon, C. S. (2021). Synthesis of amorphous nano-silica from recycled concrete fines by two-step wet carbonation. Cement and Concrete Research, 147, 106526. doi:10.1016/j.cemconres.2021.106526.

Esmaeili, J., & Oudah Al-Mwanes, A. (2021). A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Materials Today: Proceedings, 42, 1958–1965. doi:10.1016/j.matpr.2020.12.242.

Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 122400. doi:10.1016/j.conbuildmat.2021.122400.

Elaqra, H. A., Haloub, M. A. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, 203, 75–82. doi:10.1016/j.conbuildmat.2019.01.077.

Shen, P., Lu, L., He, Y., Rao, M., Fu, Z., Wang, F., & Hu, S. (2018). Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete. Construction and Building Materials, 162, 512–522. doi:10.1016/j.conbuildmat.2017.11.172.

Collepardi, S., Coppola, L., Troli, R., & Collepardi, M. (1997). Mechanical properties of modified reactive powder concrete. American Concrete Institute, ACI Special Publication, SP-173, 1–21. doi:10.14359/6175.

Lee, N. K., Koh, K. T., Kim, M. O., & Ryu, G. S. (2018). Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC). Cement and Concrete Research, 104, 68–79. doi:10.1016/j.cemconres.2017.11.002.

Wu, Z., Khayat, K. H., & Shi, C. (2017). Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete. Cement and Concrete Research, 95, 247–256. doi:10.1016/j.cemconres.2017.02.031.

Ling, T. C., & Poon, C. S. (2012). A comparative study on the feasible use of recycled beverage and CRT funnel glass as fine aggregate in cement mortar. Journal of Cleaner Production, 29–30, 46–52. doi:10.1016/j.jclepro.2012.02.018.

Zhao, H., Poon, C. S., & Ling, T. C. (2013). Utilizing recycled cathode ray tube funnel glass sand as river sand replacement in the high-density concrete. Journal of Cleaner Production, 51, 184–190. doi:10.1016/j.jclepro.2013.01.025.

Sharma, U., Singh, L. P., Zhan, B., & Poon, C. S. (2019). Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength. Cement and Concrete Composites, 97, 312–321. doi:10.1016/j.cemconcomp.2019.01.007.

Erdem, S., Dawson, A. R., & Thom, N. H. (2012). Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates. Cement and Concrete Research, 42(2), 291–305. doi:10.1016/j.cemconres.2011.09.015.

Tahwia, A. M., Elgendy, G. M., & Amin, M. (2022). Mechanical properties of affordable and sustainable ultra-high-performance concrete. Case Studies in Construction Materials, 16, 1069. doi:10.1016/j.cscm.2022.e01069.

Tahwia, A. M., El-Far, O., & Amin, M. (2022). Characteristics of sustainable high strength concrete incorporating eco-friendly materials. Innovative Infrastructure Solutions, 7(1), 1–13. doi:10.1007/s41062-021-00609-7.

Jing, R., Liu, Y., & Yan, P. (2021). Uncovering the effect of fly ash cenospheres on the macroscopic properties and microstructure of ultra-high-performance concrete (UHPC). Construction and Building Materials, 286, 122977. doi:10.1016/j.conbuildmat.2021.122977.

Liu, J., Shi, C., & Wu, Z. (2019). Hardening, microstructure, and shrinkage development of UHPC: A review. Journal of Asian Concrete Federation, 5(2), 1–19. doi:10.18702/acf.2019.

Yalçınkaya, Ç., & Çopuroğlu, O. (2021). Hydration heat, strength and microstructure characteristics of UHPC containing blast furnace slag. Journal of Building Engineering, 34, 101915. doi:10.1016/j.jobe.2020.101915.

Abdulkareem, O. M., Fraj, A. Ben, Bouasker, M., Khouchaf, L., & Khelidj, A. (2021). Microstructural investigation of slag-blended UHPC: The effects of slag content and chemical/thermal activation. Construction and Building Materials, 292, 123455. doi:10.1016/j.conbuildmat.2021.123455.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-020


  • There are currently no refbacks.

Copyright (c) 2023 Leong Sing Wong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.