Investigation of Parameters Affecting Rotational Behavior of Cold-Formed Steel Connection

Krittiya Pawanithiboworn, Tanyada Pannachet, Maetee Boonpichetvong


This study aims to understand the behavior of connection, which holds an important key to efficient designs of the cold-formed steel structure. The focus is on examining parameters that affect the rotational stiffness and behavior of the cold-formed steel connection made of single-lipped channel sections with a bolt and gusset plate system. The numerical study has been conducted using component-based finite element analysis, with the studied parameters including bolt diameters, number of bolts in the group, size of the bolt group, thickness of the cold-formed steel cross-section, and thickness of the connecting plate. The effect of the variables is evaluated and explained by comparison. The result of the study reveals that the rotational behavior of the connection depends on the details of the assembly. For the given base connection, the parameters that give the greatest effect on the rotation stiffness and the moment capacity are the number of bolts and the bolt diameters, whereas the parameter that provides the least effect is the bolt spacing. On the other hand, the bolt group size is the most influential parameter for the member connection. For both types of connections, the thickness of the cold-formed steel section and the thickness of the gusset plate have shown limited effect on stiffness and strength. Using different variables in assembling the connection can also lead to different failure types, either bolt failure or excessive bolt hole deformation, which leads to plate failure.


Doi: 10.28991/CEJ-2023-09-11-08

Full Text: PDF


Cold-Formed Steel; Bolt Connection; Rotational Stiffness; Parametric Study; Component-Based Finite Element Method.


Johnston, R. P. D., McGrath, T., Nanukuttan, S., Lim, J. B. P., Soutsos, M., Chiang, M. C., Masood, R., & Rahman, M. A. (2018). Sustainability of Cold-formed Steel Portal Frames in Developing Countries in the Context of Life Cycle Assessment and Life Cycle Costs. Structures, 13, 79–87. doi:10.1016/j.istruc.2017.11.003.

Rondal, J. (2005). Introduction to Light Gauge Metal Structures. Light Gauge Metal Structures Recent Advances. CISM International Centre for Mechanical Sciences, 455. Springer, Vienna, Austria. doi:10.1007/3-211-38023-X_1.

Lee, Y. H., Tan, C. S., Mohammad, S., Md Tahir, M., & Shek, P. N. (2014). Review on cold-formed steel connections. The Scientific World Journal, 2014, 1–11. doi:10.1155/2014/951216.

Chung, K. F., & Lau, L. (1999). Experimental investigation on bolted moment connections among cold formed steel members. Engineering Structures, 21(10), 898–911. doi:10.1016/S0141-0296(98)00043-1.

Lim, J. B. P., & Nethercot, D. A. (2003). Ultimate strength of bolted moment-connections between cold-formed steel members. Thin-Walled Structures, 41(11), 1019–1039. doi:10.1016/S0263-8231(03)00045-4.

Yu, W. K., Chung, K. F., & Wong, M. F. (2005). Analysis of bolted moment connections in cold-formed steel beam-column sub-frames. Journal of Constructional Steel Research, 61(9), 1332–1352. doi:10.1016/j.jcsr.2005.03.001.

Hadianfard, M. A., & Razani, R. (2003). Effects of semi-rigid behavior of connections in the reliability of steel frames. Structural Safety, 25(2), 123–138. doi:10.1016/S0167-4730(02)00046-2.

Dundu, M., & Kemp, A. R. (2006). Strength requirements of single cold-formed channels connected back-to-back. Journal of Constructional Steel Research, 62(3), 250–261. doi:10.1016/j.jcsr.2005.07.006.

Johnston, R. P., Wrzesien, A. M., Lim, J. B. P., Sonebi, M., & Armstrong, C. G. (2013). The effect of semi-rigid joints on the design of cold-formed steel portal frame structures. Civil and Environmental Research, 5, 1-5.

Lim, J. B. P., & Nethercot, D. A. (2004). Stiffness prediction for bolted moment-connections between cold-formed steel members. Journal of Constructional Steel Research, 60(1), 85–107. doi:10.1016/S0143-974X(03)00105-6.

Dubina, D., Stratan, A., & Nagy, Z. (2009). Full - Scale tests on cold-formed steel pitched-roof portal frames with bolted joints. Advanced Steel Construction, 5(2), 175–194.

Wrzesien, A. M., Lim, J. B. P., Xu, Y., MacLeod, I. A., & Lawson, R. M. (2015). Effect of stressed skin action on the behaviour of cold-formed steel portal frames. Engineering Structures, 105, 123–136. doi:10.1016/j.engstruct.2015.09.026.

Ali, B. A., Saad, S., & Osman, M. H. (2010). Cold-formed steel frame with bolted moment connections. International Journal of Civil & Structural Engineering, 1(3), 534-544.

Ho, H. C., & Chung, K. F. (2006). Structural behavior of lapped cold-formed steel Z sections with generic bolted configurations. Thin-Walled Structures, 44(4), 466–480. doi:10.1016/j.tws.2006.03.012.

ANSI/AISC 360-16. (2016). Specification for Structural Steel Buildings. American institute of steel construction, Chicago, United States.

EN 1993-1-8 (2005). Eurocode 3: Design of steel structures-Part 1-8: Design of joints. European Committee for Standardization, Brussels, Belgium.

Wong, M. F., & Chung, K. F. (2002). Structural behaviour of bolted moment connections in cold-formed steel beam-column sub-frames. Journal of Constructional Steel Research, 58(2), 253–274. doi:10.1016/S0143-974X(01)00044-X.

Maali, M., Sagiroglu, M., & Semih Solak, M. (2018). Experimental behavior of screwed beam-to-column connections in cold-formed steel frames. Arabian Journal of Geosciences, 11(9), 205. doi:10.1007/s12517-018-3540-4.

Rinchen, & Rasmussen, K. J. R. (2019). Behaviour and modelling of connections in cold-formed steel single C-section portal frames. Thin-Walled Structures, 143, 106233. doi:10.1016/j.tws.2019.106233.

Hazlan, A., Tahir, M., Sulaiman, A., & Mahendran, M. (2010). Bolted beam-column moment connections between cold-formed steel members. Incorporating Sustainable Practice in Mechanics and Structures of Materials, 655–660, Taylor & Francis Group, Milton Park Abingdon, United Kingdom. doi:10.1201/b10571-119.

Zhang, W., Zhao, Z., & Liu, Y. (2023). Experimental investigation of header end-plate beam-to-column composite connections with single-corner gusset plates. Journal of Constructional Steel Research, 201, 107722. doi:10.1016/j.jcsr.2022.107722.

Daz, C., Mart, P., Victoria, M., & Querin, O. M. (2011). Review on the modelling of joint behaviour in steel frames. Journal of Constructional Steel Research, 67(5), 741–758. doi:10.1016/j.jcsr.2010.12.014.

Khalate, S., & Kulkarni, S. (2015). Finite element analysis of cold formed steel bolted connection. International Journal of Recent Technology and Engineering, 4(3), 23-28.

El-Hadary, M. R., El-Aghoury, I. M., & Ibrahim, S. A. B. (2022). Behavior of different bolted connection configurations in frames composed of cold-formed sections. Ain Shams Engineering Journal, 13(1), 101500. doi:10.1016/j.asej.2021.05.014.

Shahini, M. F., Bagheri Sabbagh, A., Davidson, P., Mirghaderi, R., & Torabian, S. (2022). Experiments on cold-formed steel moment-resisting connections with bolting friction-slip mechanism. Journal of Constructional Steel Research, 196, 107368. doi:10.1016/j.jcsr.2022.107368.

Ye, J., Mojtabaei, S. M., Hajirasouliha, I., & Pilakoutas, K. (2020). Efficient design of cold-formed steel bolted-moment connections for earthquake resistant frames. Thin-Walled Structures, 150. doi:10.1016/j.tws.2018.12.015.

Nagy, Zs., Dezo, A., & Muresan, A. A. (2019). Parametric study of cold formed steel joints using the component method. Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications, 1089–1094, CRC Press, Boca Raton, United States. doi:10.1201/9780429426506-189.

Steenhuis, M., Jaspart, J. P., Gomes, F., & Leino, T. (1998). Application of the component method to steel joints. COST C1 International Conference, 17-19 September, 1998, Liège, Belgium.

Blum, H. B., & Li, Z. (2021). Sensitivity of design parameters on the stability of apex connections in cold-formed steel portal frames. Proceedings of the Annual Stability Conference Structural Stability Research Council 2021, SSRC 2021, 13–16.

Wang, F., Han, Y., & Yang, J. (2021). Nonlinear FE analysis on stiffness and resistance of bolted cold-formed steel built-up joints. Structures, 33, 2520–2533. doi:10.1016/j.istruc.2021.04.098.

Aminuddin, K., Saggaff, A., Tahir, M. M., Ngian, S. P., Sulaiman, A., Firdaus, M., & Aghlara, R. (2019). Analytical and Experimental Investigation on Slip-in Gusset Plate Connection for Double C-channel Sections of Cold-formed Steel. The Open Civil Engineering Journal, 13(1), 210–217. doi:10.2174/1874149501913010210.

Anwer, B., Saad, S., & Osman, H. (2012). Structural Performance of Bolted Moment Connections among Single Cold-Formed Channel Sections. International Journal of Engineering & Technology, 2(4), 599–607.

Freya, R., Senthil, R., Merin, W. J., Saravanakumar, R., Kuber, K., & Gowtham, M. (2016). Behaviour of cold-formed steel semi rigid connections. International Specialty Conference on Cold-Formed Steel Structures, 9-10 November, 2016, Baltimore, United States.

Dubina, D., Stratan, A., Ciutina, A., Fulop, L., & Zsolt, N. (2018). Monotonic and Cyclic Performance of Joints of Cold Formed Steel Portal Frames. Thin-Walled Structures, 381–388, CRC Press, Boca Raton, United States. doi:10.1201/9781351077309-42.

Aly, E. H. A. H., Hanna, M. T., & El-Mahdy, G. M. (2018). Strength and Ductility of Steel Cold-Formed Section Beam to Column Bolted Connections. Facing the Challenges in Structural Engineering. GeoMEast 2017, Sustainable Civil Infrastructures, Springer, Cham, Switzerland. doi:10.1007/978-3-319-61914-9_33.

IDEA StatiCa. (2021). Fast Connection Design. IDEA StatiCa, Brno, Czech Republic. Available online: (accessed on October 2023).

BlueScope Steel Limited. (2017). LYSAGHT Zeds and CEES user guide for design and installation professionals. BlueScope Steel Limited, Melbourne, Australia.

AISI S100. (2007). North American Specification for the Design of Cold-Formed Steel Structural Members. American Iron and Steel Institute (AISI), Washington, United States.

DPT 1311-50. (2007). Wind Loading Calculation and Response of Buildings. Department of Public Works and Town & Country Planning, Bangkok, Thailand. (In Thai).

Shedblog. (2011). Strap cast in slab footing cleat bracket. Available online: (accessed on October 2023).

Kit Buildings Direct. (2020). Steel Framed Buildings Corner. Available online: (accessed on October 2023).

Wald, F., Šabatka, L., Bajer, M., Kožich, M., Vild, M., Golubiatnikov, K., ... & Kuříková, M. (2021). Component-based finite element design of steel connections. Czech Technical University, Prague, Czech.

Bučmys, Ž., & Daniunas, A. (2017). Component Method in the Strength Evaluation of Cold-formed Steel Joints. Procedia Engineering, 172, 143–148. doi:10.1016/j.proeng.2017.02.036.

Bučmys, Ž., Daniūnas, A., Jaspart, J. P., & Demonceau, J. F. (2018). A component method for cold-formed steel beam-to-column bolted gusset plate joints. Thin-Walled Structures, 123, 520–527. doi:10.1016/j.tws.2016.10.022.

EN 1993-1-5. (2006). Eurocode 3: Design of structures-Part 1-5: Plated structural elements. European Committee for Standardization (CEN), Brussels, Belgium.

Papargyriou, I., Mojtabaei, S. M., Hajirasouliha, I., Becque, J., & Pilakoutas, K. (2022). Cold-formed steel beam-to-column bolted connections for seismic applications. Thin-Walled Structures, 172, 108876. doi:10.1016/j.tws.2021.108876.

Yin, L., Niu, Y., Quan, G., Gao, H., & Ye, J. (2023). A numerical investigation of new types of bolted joints for cold-formed steel moment-resisting frame buildings. Journal of Building Engineering, 65, 105738. doi:10.1016/j.jobe.2022.105738.

Maali, M. S., Maali, M., & Yazici, C. (2023). Experimental investigation of screwed beam-column connection using cold-formed steel back-to-back sections with gusset-plate. Structures, 47, 2025–2036. doi:10.1016/j.istruc.2022.12.030.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-08


  • There are currently no refbacks.

Copyright (c) 2023 Krittiya Pawanithiboworn, Tanyada Pannachet, Maetee Boonpichetvong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.