Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks

Amjad A. Yasin, Mohammad T. Awwad, Ahmad B. Malkawi, Faroq R. Maraqa, Jamal A. Alomari

Abstract


Tuff stones are volcanic sedimentary rocks formed by the consolidation of volcanic ash. They possess unique geological properties that make them attractive for a variety of construction and architectural applications. Considerable amounts and various types of Tuff stones exist in the eastern part of Jordan. However, the use of Tuff stones often requires experimental investigations that can significantly impact the accuracy of their physical and mechanical characteristics. To ensure consistent and predictable properties in their mix design, it is essential to minimize the effects of these experimental procedures. Artificial neural networks (ANNs) have emerged as a promising tool to address such challenges, leveraging their ability to analyze complex data and optimize concrete mix design. In this research, ANNs have been used to predict the optimum content of Tuff fine aggregate to produce structural lightweight concrete with a wide range (20 to 50 MPa) of compressive strength. Three different types of Tuff aggregates, namely gray, brown, and yellow Tuff, were experimentally investigated. A set of 68 mixes was produced by varying the fine-tuff aggregate content from 0 to 50%. Concrete cubes were cast and tested for their compressive strength. These samples were then used to form the input dataset and targets for ANN. ANN was created by incorporating the recent advancements in deep learning algorithms, and then it was trained, validated using data collected from the literature, and tested. Both experimental and ANN results showed that the optimum content of the various types of used Tuff fine aggregate ranges between 20 to 25%. The results revealed that there is a clear agreement between the predicted values using ANN and the experimental ones. The use of ANNs may help to cut costs, save time, and expand the applications of Tuff aggregate in lightweight concrete production.

 

Doi: 10.28991/CEJ-2023-09-11-013

Full Text: PDF


Keywords


Volcanic Tuff; Lightweight; Concrete; Artificial Neural Networks; Compressive Strength.

References


Aldakshe, A., Çağlar, H., Çağlar, A., & Avan, Ç. (2020). The investigation of use as aggregate in lightweight concrete production of boron wastes. Civil Engineering Journal (Iran), 6(7), 1328–1335. doi:10.28991/cej-2020-03091551.

Lu, J. X. (2023). Recent advances in high strength lightweight concrete: From development strategies to practical applications. Construction and Building Materials, 400, 132905. doi:10.1016/j.conbuildmat.2023.132905.

Malkawi, A. B. (2023). Effect of Aggregate on the Performance of Fly-Ash-Based Geopolymer Concrete. Buildings, 13(3), 769. doi:10.3390/buildings13030769.

Güneyisi, E., Gesoglu, M., Özturan, T., & İpek, S. (2015). Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber. Construction and Building Materials, 84, 156-168. doi:10.1016/j.conbuildmat.2015.03.054.

Malkawi, A. B., Habib, M., Alzubi, Y., & Aladwan, J. (2020). Engineering properties of lightweight geopolymer concrete using Palm Oil Clinker aggregate. International Journal of GEOMATE, 18(65), 132–139. doi:10.21660/2020.65.89948.

Malkawi, A. B., Aladwan, J., & Al-salaheen, M. (2019). Agricultural palm oil wastes for development of structural lightweight concrete. International Journal of Civil Engineering and Technology, 10(07), 175–183.

Onyelowe, K. C., Ebid, A. M., Mahdi, H. A., Riofrio, A., Eidgahee, D. R., Baykara, H., Soleymani, A., Kontoni, D. P. N., Shakeri, J., & Jahangir, H. (2022). Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment. Civil Engineering Journal (Iran), 8(11), 2391–2410. doi:10.28991/CEJ-2022-08-11-03.

Yasin, A. A., Awwad, M. T., Hajjeh, H. R., & Sahawneh, E. I. (2012). Effect of volcanic tuff on the concrete compressive strength. Contemporary Engineering Sciences, 5(6), 295-306.

Bagci, C., Tameni, G., Elsayed, H., & Bernardo, E. (2023). Sustainable manufacturing of new construction material from alkali activation of volcanic tuff. Materials Today Communications, 36, 106645. doi:10.1016/j.mtcomm.2023.106645.

Al-Akhras, N. M., Jamal Shannag, M., & Malkawi, A. B. (2016). Evaluation of shear-deficient lightweight RC beams retrofitted with adhesively bonded CFRP sheets. European Journal of Environmental and Civil Engineering, 20(8), 899–913. doi:10.1080/19648189.2015.1084383.

Edris, W. F., Abdelkader, S., Salama, A. H. E., & Al Sayed, A. A. K. A. (2021). Concrete behaviour with volcanic tuff inclusion. Civil Engineering and Architecture, 9(5), 1434–1441. doi:10.13189/CEA.2021.090516.

Amin, M. N., Javed, M. F., Khan, K., Shalabi, F. I., & Qadir, M. G. (2021). Modeling compressive strength of eco-friendly volcanic ash mortar using artificial neural networking. Symmetry, 13(11), 2009. doi:10.3390/sym13112009.

Özkan, Ş., Ceylan, H., & Sivri, M. (2023). Using artificial neural networks for estimating the compressive strength of andesite-substituted cement-based composites. Research Square, 1-22. doi:10.21203/rs.3.rs-2013306/v1.

Adamu, M., Çolak, A. B., Ibrahim, Y. E., Haruna, S. I., & Hamza, M. F. (2023). Prediction of Mechanical Properties of Rubberized Concrete Incorporating Fly Ash and Nano Silica by Artificial Neural Network Technique. Axioms, 12(1), 81. doi:10.3390/axioms12010081.

Rafiq Joo, M., & Ahmad Sofi, F. (2023). Unified Approach for Estimating Axial-Load Capacity of Concrete-Filled Double-Skin Steel Tubular Columns of Multiple Shapes Using Nonlinear FE Models and Artificial Neural Networks. Practice Periodical on Structural Design and Construction, 28(2), 4022074. doi:10.1061/(asce)sc.1943-5576.0000752.

Majlesi, A., Khodadadi Koodiani, H., Troconis de Rincon, O., Montoya, A., Millano, V., Torres-Acosta, A. A., & Rincon Troconis, B. C. (2023). Artificial neural network model to estimate the long-term carbonation depth of concrete exposed to natural environments. Journal of Building Engineering, 74, 106545. doi:10.1016/j.jobe.2023.106545.

Mirbod, M., & Shoar, M. (2022). Intelligent Concrete Surface Cracks Detection using Computer Vision, Pattern Recognition, and Artificial Neural Networks. Procedia Computer Science, 217, 52–61. doi:10.1016/j.procs.2022.12.201.

Hiew, S. Y., Teoh, K. Bin, Raman, S. N., Kong, D., & Hafezolghorani, M. (2023). Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy. Engineering Structures, 277, 115447. doi:10.1016/j.engstruct.2022.115447.

Miao, P., Yokota, H., & Zhang, Y. (2023). Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network. Structure and Infrastructure Engineering, 19(4), 475–489. doi:10.1080/15732479.2021.1951778.

Abunassar, N., Alas, M., & Ali, S. I. A. (2023). Prediction of Compressive Strength in Self-compacting Concrete Containing Fly Ash and Silica Fume Using ANN and SVM. Arabian Journal for Science and Engineering, 48(4), 5171–5184. doi:10.1007/s13369-022-07359-3.

Gamil, Y. (2023). Machine learning in concrete technology: A review of current researches, trends, and applications. Frontiers in Built Environment, 9, 1145591. doi:10.3389/fbuil.2023.1145591.

Siddique, R., Aggarwal, P., & Aggarwal, Y. (2011). Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Advances in Engineering Software, 42(10), 780-786. doi:10.1016/j.advengsoft.2011.05.016.

Ceylan, H. (2021). Prediction of the compressive strength of volcanic tuff mineral additive concrete using artificial neural network. Arabian Journal of Geosciences, 14(21), 2215. doi:10.1007/s12517-021-08637-4.

Shahmansouri, A. A., Yazdani, M., Hosseini, M., Akbarzadeh Bengar, H., & Farrokh Ghatte, H. (2022). The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. Construction and Building Materials, 317, 125876. doi:10.1016/j.conbuildmat.2021.125876.

Dahish, H. A., Alfawzan, M. S., Tayeh, B. A., Abusogi, M. A., & Bakri, M. (2023). Effect of inclusion of natural pozzolan and silica fume in cement - based mortars on the compressive strength utilizing artificial neural networks and support vector machine. Case Studies in Construction Materials, 18, 2153. doi:10.1016/j.cscm.2023.e02153.

Topçu, I. B., Karakurt, C., & Saridemir, M. (2008). Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic. Materials and Design, 29(10), 1986–1991. doi:10.1016/j.matdes.2008.04.005.

Al-Swaidani, A. M., & Khwies, W. T. (2018). Applicability of Artificial Neural Networks to Predict Mechanical and Permeability Properties of Volcanic Scoria-Based Concrete. Advances in Civil Engineering, 2018. doi:10.1155/2018/5207962.

ASTM C330-23. (2017). Standard Specification for Lightweight Aggregates for Structural Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0330_C0330M-23.

ASTM C127-15. (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.

ASTM C39/C39M-18. (2018). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039-21.

Abdolrasol, M. G. M., Suhail Hussain, S. M., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. Electronics (Switzerland), 10(21), 2689. doi:10.3390/electronics10212689.

Abu-Faraj, M., Al-Hyari, A., & Alqadi, Z. (2022). Experimental Analysis of Methods Used to Solve Linear Regression Models. Computers, Materials & Continua, 72(3), 5699–5712. doi:10.32604/cmc.2022.027364.

Al-Zboon, K. K., & Zou’by, J. (2017). Natural volcanic tuff for sustainable concrete industry. Jordan Journal of Civil Engineering, 11(3), 408-423.

Al-Tarawneh, E. K. (2023). Flexural Behavior of Reinforced Concrete Beams Containing Foamed Slag Lightweight Aggregate in the Tensile Zone. Master Thesis, Civil Engineering, Isra University, Hyderabad, Pakistan.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Amjad Abed Yasin, mohamad Thalji awwad, Faroq Reyad Maraqa, Jamal Ahmad Alomari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message