Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks
Abstract
Doi: 10.28991/CEJ-2023-09-11-013
Full Text: PDF
Keywords
References
Aldakshe, A., Çağlar, H., Çağlar, A., & Avan, Ç. (2020). The investigation of use as aggregate in lightweight concrete production of boron wastes. Civil Engineering Journal (Iran), 6(7), 1328–1335. doi:10.28991/cej-2020-03091551.
Lu, J. X. (2023). Recent advances in high strength lightweight concrete: From development strategies to practical applications. Construction and Building Materials, 400, 132905. doi:10.1016/j.conbuildmat.2023.132905.
Malkawi, A. B. (2023). Effect of Aggregate on the Performance of Fly-Ash-Based Geopolymer Concrete. Buildings, 13(3), 769. doi:10.3390/buildings13030769.
Güneyisi, E., Gesoglu, M., Özturan, T., & İpek, S. (2015). Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber. Construction and Building Materials, 84, 156-168. doi:10.1016/j.conbuildmat.2015.03.054.
Malkawi, A. B., Habib, M., Alzubi, Y., & Aladwan, J. (2020). Engineering properties of lightweight geopolymer concrete using Palm Oil Clinker aggregate. International Journal of GEOMATE, 18(65), 132–139. doi:10.21660/2020.65.89948.
Malkawi, A. B., Aladwan, J., & Al-salaheen, M. (2019). Agricultural palm oil wastes for development of structural lightweight concrete. International Journal of Civil Engineering and Technology, 10(07), 175–183.
Onyelowe, K. C., Ebid, A. M., Mahdi, H. A., Riofrio, A., Eidgahee, D. R., Baykara, H., Soleymani, A., Kontoni, D. P. N., Shakeri, J., & Jahangir, H. (2022). Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment. Civil Engineering Journal (Iran), 8(11), 2391–2410. doi:10.28991/CEJ-2022-08-11-03.
Yasin, A. A., Awwad, M. T., Hajjeh, H. R., & Sahawneh, E. I. (2012). Effect of volcanic tuff on the concrete compressive strength. Contemporary Engineering Sciences, 5(6), 295-306.
Bagci, C., Tameni, G., Elsayed, H., & Bernardo, E. (2023). Sustainable manufacturing of new construction material from alkali activation of volcanic tuff. Materials Today Communications, 36, 106645. doi:10.1016/j.mtcomm.2023.106645.
Al-Akhras, N. M., Jamal Shannag, M., & Malkawi, A. B. (2016). Evaluation of shear-deficient lightweight RC beams retrofitted with adhesively bonded CFRP sheets. European Journal of Environmental and Civil Engineering, 20(8), 899–913. doi:10.1080/19648189.2015.1084383.
Edris, W. F., Abdelkader, S., Salama, A. H. E., & Al Sayed, A. A. K. A. (2021). Concrete behaviour with volcanic tuff inclusion. Civil Engineering and Architecture, 9(5), 1434–1441. doi:10.13189/CEA.2021.090516.
Amin, M. N., Javed, M. F., Khan, K., Shalabi, F. I., & Qadir, M. G. (2021). Modeling compressive strength of eco-friendly volcanic ash mortar using artificial neural networking. Symmetry, 13(11), 2009. doi:10.3390/sym13112009.
Özkan, Ş., Ceylan, H., & Sivri, M. (2023). Using artificial neural networks for estimating the compressive strength of andesite-substituted cement-based composites. Research Square, 1-22. doi:10.21203/rs.3.rs-2013306/v1.
Adamu, M., Çolak, A. B., Ibrahim, Y. E., Haruna, S. I., & Hamza, M. F. (2023). Prediction of Mechanical Properties of Rubberized Concrete Incorporating Fly Ash and Nano Silica by Artificial Neural Network Technique. Axioms, 12(1), 81. doi:10.3390/axioms12010081.
Rafiq Joo, M., & Ahmad Sofi, F. (2023). Unified Approach for Estimating Axial-Load Capacity of Concrete-Filled Double-Skin Steel Tubular Columns of Multiple Shapes Using Nonlinear FE Models and Artificial Neural Networks. Practice Periodical on Structural Design and Construction, 28(2), 4022074. doi:10.1061/(asce)sc.1943-5576.0000752.
Majlesi, A., Khodadadi Koodiani, H., Troconis de Rincon, O., Montoya, A., Millano, V., Torres-Acosta, A. A., & Rincon Troconis, B. C. (2023). Artificial neural network model to estimate the long-term carbonation depth of concrete exposed to natural environments. Journal of Building Engineering, 74, 106545. doi:10.1016/j.jobe.2023.106545.
Mirbod, M., & Shoar, M. (2022). Intelligent Concrete Surface Cracks Detection using Computer Vision, Pattern Recognition, and Artificial Neural Networks. Procedia Computer Science, 217, 52–61. doi:10.1016/j.procs.2022.12.201.
Hiew, S. Y., Teoh, K. Bin, Raman, S. N., Kong, D., & Hafezolghorani, M. (2023). Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy. Engineering Structures, 277, 115447. doi:10.1016/j.engstruct.2022.115447.
Miao, P., Yokota, H., & Zhang, Y. (2023). Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network. Structure and Infrastructure Engineering, 19(4), 475–489. doi:10.1080/15732479.2021.1951778.
Abunassar, N., Alas, M., & Ali, S. I. A. (2023). Prediction of Compressive Strength in Self-compacting Concrete Containing Fly Ash and Silica Fume Using ANN and SVM. Arabian Journal for Science and Engineering, 48(4), 5171–5184. doi:10.1007/s13369-022-07359-3.
Gamil, Y. (2023). Machine learning in concrete technology: A review of current researches, trends, and applications. Frontiers in Built Environment, 9, 1145591. doi:10.3389/fbuil.2023.1145591.
Siddique, R., Aggarwal, P., & Aggarwal, Y. (2011). Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Advances in Engineering Software, 42(10), 780-786. doi:10.1016/j.advengsoft.2011.05.016.
Ceylan, H. (2021). Prediction of the compressive strength of volcanic tuff mineral additive concrete using artificial neural network. Arabian Journal of Geosciences, 14(21), 2215. doi:10.1007/s12517-021-08637-4.
Shahmansouri, A. A., Yazdani, M., Hosseini, M., Akbarzadeh Bengar, H., & Farrokh Ghatte, H. (2022). The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. Construction and Building Materials, 317, 125876. doi:10.1016/j.conbuildmat.2021.125876.
Dahish, H. A., Alfawzan, M. S., Tayeh, B. A., Abusogi, M. A., & Bakri, M. (2023). Effect of inclusion of natural pozzolan and silica fume in cement - based mortars on the compressive strength utilizing artificial neural networks and support vector machine. Case Studies in Construction Materials, 18, 2153. doi:10.1016/j.cscm.2023.e02153.
Topçu, I. B., Karakurt, C., & Saridemir, M. (2008). Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic. Materials and Design, 29(10), 1986–1991. doi:10.1016/j.matdes.2008.04.005.
Al-Swaidani, A. M., & Khwies, W. T. (2018). Applicability of Artificial Neural Networks to Predict Mechanical and Permeability Properties of Volcanic Scoria-Based Concrete. Advances in Civil Engineering, 2018. doi:10.1155/2018/5207962.
ASTM C330-23. (2017). Standard Specification for Lightweight Aggregates for Structural Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0330_C0330M-23.
ASTM C127-15. (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.
ASTM C39/C39M-18. (2018). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039-21.
Abdolrasol, M. G. M., Suhail Hussain, S. M., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. Electronics (Switzerland), 10(21), 2689. doi:10.3390/electronics10212689.
Abu-Faraj, M., Al-Hyari, A., & Alqadi, Z. (2022). Experimental Analysis of Methods Used to Solve Linear Regression Models. Computers, Materials & Continua, 72(3), 5699–5712. doi:10.32604/cmc.2022.027364.
Al-Zboon, K. K., & Zou’by, J. (2017). Natural volcanic tuff for sustainable concrete industry. Jordan Journal of Civil Engineering, 11(3), 408-423.
Al-Tarawneh, E. K. (2023). Flexural Behavior of Reinforced Concrete Beams Containing Foamed Slag Lightweight Aggregate in the Tensile Zone. Master Thesis, Civil Engineering, Isra University, Hyderabad, Pakistan.
DOI: 10.28991/CEJ-2023-09-11-013
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Amjad Abed Yasin, mohamad Thalji awwad, Faroq Reyad Maraqa, Jamal Ahmad Alomari
This work is licensed under a Creative Commons Attribution 4.0 International License.