Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism
Downloads
Doi: 10.28991/CEJ-2023-09-11-01
Full Text: PDF
[2] Ozturk, T., Altinsoy, H., Türkeş, M., & Kurnaz, M. L. (2012). Simulation of temperature and precipitation climatology for the Central Asia CORDEX domain using RegCM 4.0. Climate Research, 52(1), 63–76. doi:10.3354/cr01082.
[3] Toosi, A.S., Calbimonte, G. H., Nouri, H., & Alaghmand, S. (2019). River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. Journal of Hydrology, 574, 660–671. doi:10.1016/j.jhydrol.2019.04.072.
[4] Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., & Abbaspour, K. C. (2019). The future of extreme climate in Iran. Scientific Reports, 9(1), 1464. doi:10.1038/s41598-018-38071-8.
[5] Yazdani, M. H., Amininia, K., Safarianzengir, V., Soltani, N., & parhizkar, H. (2021). Analyzing climate change and its effects on drought and water scarcity (case study: Ardabil, Northwestern Province of Iran, Iran). Sustainable Water Resources Management, 7(2), 7. doi:10.1007/s40899-021-00494-z.
[6] Ghorbani, M. A., Mahmoud Alilou, S., Javidan, S., & Naganna, S. R. (2021). Assessment of spatio-temporal variability of rainfall and mean air temperature over Ardabil province, Iran. SN Applied Sciences, 3(8). doi:10.1007/s42452-021-04698-y.
[7] Barati, A. A., Azadi, H., Movahhed Moghaddam, S., Scheffran, J., & Dehghani Pour, M. (2023). Agricultural expansion and its impacts on climate change: evidence from Iran. Environment, Development and Sustainability. doi:10.1007/s10668-023-02926-6.
[8] Hamedi, H., Alesheikh, A. A., Panahi, M., & Lee, S. (2022). Landslide susceptibility mapping using deep learning models in Ardabil province, Iran. Stochastic Environmental Research and Risk Assessment, 36(12), 4287–4310. doi:10.1007/s00477-022-02263-6.
[9] Kuriachen, P., Korekallu Srinivasa, A., Sam, A. S., & Surendran Padmaja, S. (2022). The Economics of Climate Change in Agriculture. Innovative Approaches for Sustainable Development. Springer, Cham, Switzerland. doi:10.1007/978-3-030-90549-1_1.
[10] Fatahi, A., Safarian Zengir, V., Sobhani, B., Kianian, M., & Ghahremani, A. (2022). Assessment and zoning of suitable climate for economic development of cultivation of Sunflower (Helianthus annuus) garden crop (Ardabil Province, Iran). European Journal of Horticultural Science, 87(1), 1–12. doi:10.17660/eJHS.2022/001.
[11] Ghanbari, R., Sobhani, B., Aghaee, M., oshnooei nooshabadi, A., & Safarianzengir, V. (2021). Monitoring and evaluation of effective climate parameters on the cultivation and zoning of corn agricultural crop in Iran (case study: Ardabil province). Arabian Journal of Geosciences, 14(5), 1–11. doi:10.1007/s12517-021-06807-y.
[12] Deihimfard, R., Rahimi-Moghaddam, S., Collins, B., & Azizi, K. (2022). Future climate change could reduce irrigated and rainfed wheat water footprint in arid environments. Science of the Total Environment, 807, 150991. doi:10.1016/j.scitotenv.2021.150991.
[13] Satari, S.Y., & Khalilian, S. (2020). On Projecting Climate Change Impacts on Soybean Yield in Iran: An Econometric Approach. Environmental Processes, 7(1), 73–87. doi:10.1007/s40710-019-00400-y.
[14] Tayyebi, M., Sharafati, A., Nazif, S., & Raziei, T. (2023). Assessment of adaptation scenarios for agriculture water allocation under climate change impact. Stochastic Environmental Research and Risk Assessment, 37(9), 3527–3549. doi:10.1007/s00477-023-02467-4.
[15] Bahlool, Q. (2023). Tourist Attractions in Badakhshan Province, Its Role in the Local Economy. Integrated Journal for Research in Arts and Humanities, 3(1), 23–29. doi:10.55544/ijrah.3.1.5.
[16] Roshan, G., Yousefi, R., & Fitchett, J. M. (2016). Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability. International Journal of Biometeorology, 60(1), 33–52. doi:10.1007/s00484-015-1003-0.
[17] Sobhani, B., & Safarian, V. Z. (2020). Evaluation and zoning of environmental climatic parameters for tourism feasibility in northwestern Iran, located on the western border of Turkey. Modeling Earth Systems and Environment, 6(2), 853–864. doi:10.1007/s40808-020-00712-1.
[18] Amininia, K., Abad, B., Safarianzengir, V., GhaffariGilandeh, A., & Sobhani, B. (2020). Investigation and analysis of climate comfort on people health tourism in Ardabil province, Iran. Air Quality, Atmosphere & Health, 13(11), 1293–1303. doi:10.1007/s11869-020-00883-x.
[19] Arami Shamasbi, F., Kanooni, A., & Rasinezami, S. (2022). The effect of different management scenarios on quantitative changes in water resources of Balekhlichai river watershed and Ardabil plain aquifer using MODSIM model. Water and Irrigation Management, 11(4), 923–935.
[20] Javan, K., Saleh, F. N., & Shahraiyni, H. T. (2013). The Influences of Climate Change on the Runoff of Gharehsoo River Watershed. American Journal of Climate Change, 2(4), 296–305. doi:10.4236/ajcc.2013.24030.
[21] Najjar Ghabel, S., Zarghami, M., Akhbari, M., & Nadiri, A. A. (2019). Groundwater management in Ardabil plain using agent-based modeling. Iran-Water Resources Research, 15(3), 1-16. (In Persian).
[22] Araste, M., Kaboli, H., & Yazdani, M. (2017). Assessing the impacts of meteorological drought on yield of rainfed wheat and barley (Case study: Khorasan Razavi province). Journal of Agricultural Meteorology, 5(1), 15-25. doi:10.22125/AGMJ.2017.54980.
[23] Emadodin, I., Reinsch, T., & Taube, F. (2019). Drought and desertification in Iran. Hydrology, 6(3), 66. doi:10.3390/hydrology6030066.
[24] Nourani, V., Ghareh Tapeh, A. H., Khodkar, K., & Huang, J. J. (2023). Assessing long-term climate change impact on spatiotemporal changes of groundwater level using autoregressive-based and ensemble machine learning models. Journal of Environmental Management, 336, 117653. doi:10.1016/j.jenvman.2023.117653.
[25] Nouri-Khajebelagh, R., Khaledian, M., & Kavoosi-Kalashami, M. (2022). Determination of global water value to improve water management in Ardabil plain, Iran. Acta Geophysica, 70(2), 791–799. doi:10.1007/s11600-022-00741-7.
[26] Anaraki, M. V., Farzin, S., Mousavi, S. F., & Karami, H. (2021). Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods. Water Resources Management, 35(1), 199–223. doi:10.1007/s11269-020-02719-w.
[27] Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., & Nauss, T. (2015). Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spatial Statistics, 14, 91–113. doi:10.1016/j.spasta.2015.05.008.
[28] El-Mahdy, M. E. S., El-Abd, W. A., & Morsi, F. I. (2021). Forecasting lake evaporation under a changing climate with an integrated artificial neural network model: A case study Lake Nasser, Egypt. Journal of African Earth Sciences, 179, 104191. doi:10.1016/j.jafrearsci.2021.104191.
[29] Amirhossien, F., Alireza, F., Kazem, J., & Mohammadbagher, S. (2015). A Comparison of ANN and HSPF Models for Runoff Simulation in Balkhichai River Watershed, Iran. American Journal of Climate Change, 4(3), 203–216. doi:10.4236/ajcc.2015.43016.
[30] Javan, K., Lialestani, M. R. F. H., Ashouri, H., & Moosavian, N. (2015). Assessment of the impacts of nonstationarity on watershed runoff using artificial neural networks: a case study in Ardebil, Iran. Modeling Earth Systems and Environment, 1(3), 1–10. doi:10.1007/s40808-015-0030-5.
[31] Luk, K. C., Ball, J. E., & Sharma, A. (2000). A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology, 227(1–4), 56–65. doi:10.1016/S0022-1694(99)00165-1.
[32] Alasali, F., Tawalbeh, R., Ghanem, Z., Mohammad, F., & Alghazzawi, M. (2021). A sustainable early warning system using rolling forecasts based on ANN and golden ratio optimization methods to accurately predict real-time water levels and flash flood. Sensors, 21(13), 4598. doi:10.3390/s21134598.
[33] Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A., & Geneletti, D. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12(1), 1–14. doi:10.1007/s13201-021-01545-8.
[34] Dhamodaran, S., & Lakshmi, M. (2021). Comparative analysis of spatial interpolation with climatic changes using inverse distance method. Journal of Ambient Intelligence and Humanized Computing, 12(6), 6725–6734. doi:10.1007/s12652-020-02296-1.
[35] Taie Semiromi, M., & Koch, M. (2019). Analysis of spatio-temporal variability of surface–groundwater interactions in the Gharehsoo river basin, Iran, using a coupled SWAT-MODFLOW model. Environmental Earth Sciences, 78(6), 1–21. doi:10.1007/s12665-019-8206-3.
[36] Anshuka, A., van Ogtrop, F. F., & Willem Vervoort, R. (2019). Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis. Natural Hazards, 97(2), 955–977. doi:10.1007/s11069-019-03665-6.
[37] Naresh Kumar, M., Murthy, C. S., Sesha sai, M. V. R., & Roy, P. S. (2009). On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications, 16(3), 381–389. doi:10.1002/met.136.
[38] Wang, Q., Zhang, R., Qi, J., Zeng, J., Wu, J., Shui, W., Wu, X., & Li, J. (2022). An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Scientific Data, 9(1), 124. doi:10.1038/s41597-022-01201-z.
[39] Dikshit, A., Pradhan, B., & Alamri, A. M. (2020). Short-term spatio-temporal drought forecasting using random forests model at New South Wales, Australia. Applied Sciences (Switzerland), 10(12), 4254. doi:10.3390/app10124254.
[40] Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140–145. doi:10.1016/j.advwatres.2014.11.012.
[41] Elbeltagi, A., Kumar, M., Kushwaha, N. L., Pande, C. B., Ditthakit, P., Vishwakarma, D. K., & Subeesh, A. (2023). Drought indicator analysis and forecasting using data driven models: case study in Jaisalmer, India. Stochastic Environmental Research and Risk Assessment, 37(1), 113–131. doi:10.1007/s00477-022-02277-0.
[42] Luo, B., Liu, X., Zhang, F., & Guo, P. (2021). Optimal management of cultivated land coupling remote sensing-based expected irrigation water forecasting. Journal of Cleaner Production, 308, 127370. doi:10.1016/j.jclepro.2021.127370.
[43] Lotfirad, M., Esmaeili-Gisavandani, H., & Adib, A. (2022). Drought monitoring and prediction using SPI, SPEI, and random forest model in various climates of Iran. Journal of Water and Climate Change, 13(2), 383–406. doi:10.2166/wcc.2021.287.
[44] Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting. Computers and Electronics in Agriculture, 152, 149–165. doi:10.1016/j.compag.2018.07.013.
[45] Patil, R., Polisgowdar, B. S., Rathod, S., Bandumula, N., Mustac, I., Srinivasa Reddy, G. V., Wali, V., Satishkumar, U., Rao, S., Kumar, A., & Ondrasek, G. (2023). Spatiotemporal Characterization of Drought Magnitude, Severity, and Return Period at Various Time Scales in the Hyderabad Karnataka Region of India. Water (Switzerland), 15(13), 2483. doi:10.3390/w15132483.
[46] Sobhani, B., & Zengir, V. S. (2020). Modeling, monitoring and forecasting of drought in south and southwestern Iran, Iran. Modeling Earth Systems and Environment, 6(1), 63–71. doi:10.1007/s40808-019-00655-2.
[47] Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. doi:10.1175/2009JCLI2909.1.
[48] Statistical Centre of Iran. (2019). The concise report of the nationwide income-espense census of Iranian urban and rural households. Statistical Centre of Iran, Tehran, Iran. Available online: https://www.amar.org.ir/Portals/0/News/1398/ch-hvd97.pdf (accessed on May 2023).
[49] SCI. (2023). Statistical Centre of Iran, Tehran, Iran. Available online: https://www.amar.org.ir/english (accessed on May 2023).
[50] Karimi, Z. (2018). Public Works Programs as a Strong Means for Land and Water Conservation in Iran. Full Employment and Social Justice, 109–138. doi:10.1007/978-3-319-66376-0_5.
[51] Mesgaran, M. B., Madani, K., Hashemi, H., & Azadi, P. (2017). Iran's Land Suitability for Agriculture. Scientific Reports, 7(1), 7670. doi:10.1038/s41598-017-08066-y.
[52] Habibi, F., Rahmati, M., & Karimi, A. (2018). Contribution of tourism to economic growth in Iran's Provinces: GDM approach. Future Business Journal, 4(2), 261–271. doi:10.1016/j.fbj.2018.09.001.
[53] Nouri-Khajehbolagh, R., Khaledian, M., & Kavoosi-Kalashami, M. (2020). Comparison of water productivity indicators for major crops in Ardabil Plain. Iranian Journal of Irrigation & Drainage, 14(3), 894-904.
[54] Legates, D. R., & Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge"corrected, global precipitation. International Journal of Climatology, 10(2), 111-127. Portico. doi:10.1002/joc.3370100202.
[55] Sevruk, B., Ondrás, M., & Chvíla, B. (2009). The WMO precipitation measurement intercomparisons. Atmospheric Research, 92(3), 376–380. doi:10.1016/j.atmosres.2009.01.016.
[56] Saghafian, B., Tajrishy, M., Shahraini, H. T., & Jalali, N. (2003). Modeling spatial variability of daily rainfall in southwest Iran. In Scientia Iranica (Vol. 10, Issue 2, pp. 164–174).
[57] Doulabian, S., Golian, S., Toosi, A. S., & Murphy, C. (2021). Evaluating the effects of climate change on precipitation and temperature for iran using rcp scenarios. Journal of Water and Climate Change, 12(1), 166–184. doi:10.2166/wcc.2020.114.
[58] Gunathilake, M. B., Karunanayake, C., Gunathilake, A. S., Marasingha, N., Samarasinghe, J. T., Bandara, I. M., & Rathnayake, U. (2021). Hydrological Models and Artificial Neural Networks (ANNs) to Simulate Streamflow in a Tropical Catchment of Sri Lanka. Applied Computational Intelligence and Soft Computing, 2021, 1–9. doi:10.1155/2021/6683389.
[59] Javan, K., Lialestani, M. R. F. H., & Nejadhossein, M. (2015). A comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershed, Iran. Modeling Earth Systems and Environment, 1(4). doi:10.1007/s40808-015-0042-1.
[60] Molajou, A., Nourani, V., Afshar, A., Khosravi, M., & Brysiewicz, A. (2021). Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling. Water Resources Management, 35(8), 2369–2384. doi:10.1007/s11269-021-02818-2.
[61] Govindaraju, R. S. (2000). Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(asce)1084-0699(2000)5:2(115).
[62] Ouma, Y. O., Cheruyot, R., & Wachera, A. N. (2022). Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basin. Complex & Intelligent Systems, 8(1), 213–236. doi:10.1007/s40747-021-00365-2.
[63] Yu, N., & Haskins, T. (2021). Bagging machine learning algorithms: A generic computing framework based on machine-learning methods for regional rainfall forecasting in upstate New York. Informatics, 8(3), 47. doi:10.3390/informatics8030047.
[64] di Piazza, A., Conti, F. Lo, Noto, L. V., Viola, F., & La Loggia, G. (2011). Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. International Journal of Applied Earth Observation and Geoinformation, 13(3), 396–408. doi:10.1016/j.jag.2011.01.005.
[65] Tsesmelis, D. E., Leveidioti, I., Karavitis, C. A., Kalogeropoulos, K., Vasilakou, C. G., Tsatsaris, A., & Zervas, E. (2023). Spatiotemporal Application of the Standardized Precipitation Index (SPI) in the Eastern Mediterranean. Climate, 11(5), 95. doi:10.3390/cli11050095.
[66] Irawan, A. N. R., Komori, D., & Hendrawan, V. S. A. (2023). Correlation analysis of agricultural drought risk on wet farming crop and meteorological drought index in the tropical-humid region. Theoretical and Applied Climatology, 153(1–2), 227–240. doi:10.1007/s00704-023-04461-w.
[67] Moccia, B., Mineo, C., Ridolfi, E., Russo, F., & Napolitano, F. (2022). SPI-Based Drought Classification in Italy: Influence of Different Probability Distribution Functions. Water (Switzerland), 14(22), 3668. doi:10.3390/w14223668.
[68] McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17-22 January, 1993, Anaheim, United States.
[69] Park, C., Min, S. K., Lee, D., Cha, D. H., Suh, M. S., Kang, H. S., Hong, S. Y., Lee, D. K., Baek, H. J., Boo, K. O., & Kwon, W. T. (2016). Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dynamics, 46(7–8), 2469–2486. doi:10.1007/s00382-015-2713-z.
[70] Yang, Y., Bai, L., Wang, B., Wu, J., & Fu, S. (2019). Reliability of the global climate models during 1961–1999 in arid and semiarid regions of China. Science of the Total Environment, 667, 271–286. doi:10.1016/j.scitotenv.2019.02.188.
[71] Leirvik, T., & Yuan, M. (2021). A Machine Learning Technique for Spatial Interpolation of Solar Radiation Observations. Earth and Space Science, 8(4), 2020 001527. doi:10.1029/2020EA001527.
[72] Ciscar, J. C., Rising, J., Kopp, R. E., & Feyen, L. (2019). Assessing future climate change impacts in the EU and the USA: Insights and lessons from two continental-scale projects. Environmental Research Letters, 14(8), 84010. doi:10.1088/1748-9326/ab281e.
[73] He, Q., Wang, M., Liu, K., Li, K., & Jiang, Z. (2022). GPRChinaTemp1km: A high-resolution monthly air temperature data set for China (1951-2020) based on machine learning. Earth System Science Data, 14(7), 3273–3292. doi:10.5194/essd-14-3273-2022.
[74] Amininia, K., Abad, B., Safarianzengir, V., GhaffariGilandeh, A., & Sobhani, B. (2020). Investigation and analysis of climate comfort on people health tourism in Ardabil province, Iran. Air Quality, Atmosphere & Health, 13(11), 1293–1303. doi:10.1007/s11869-020-00883-x.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
