Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism

Kazem Javan, Mehrdad Mirabi, Sajad Ahmad Hamidi, Mariam Darestani, Ali Altaee, John Zhou


The Ardabil Plain is pivotal in the national agricultural sector and ranks among the leading agricultural and horticultural production provinces. The primary objective of this study is to enhance environmental sustainability in this critical and vulnerable region, particularly in the face of imminent droughts and climate change. The study examines the impacts of climate change on agriculture and tourism in the area. It puts forward suggestions for implementing sustainable practices to safeguard the well-being of the local population. The results indicate a 38% reduction in precipitation, especially in the autumn season, with a possible alteration in the timing and strength of rainfall. Also, a notable decline in production volume, particularly in a specific region of the Ardabil plain, has been observed. The Ardabil Plain currently produces 284,182 tons of wheat, with 204,980 tons from irrigated crops and 79,202 tons from rain-fed crops. However, the projected future scenario indicates a decrease in total wheat production to 209,196 tons, with 160,125 tons from irrigated crops and 49,071 tons from rain-fed crops. This decline in production is expected to lead to a total net income loss of approximately -$75,389,059, with -$45,095,663 attributed to irrigated crops and -$30,293,396 to rain-fed crops. The study findings suggest that the availability of water sources in certain regions may prompt a shift in farming land from the north to the south of the plain to promote environmental sustainability. This demographic change could have significant financial and social implications for the region's growth and prosperity. Moreover, increasing temperatures in the western and northern regions pose flood risks and uncomfortable travel conditions, particularly concerning given the reliance on tourism and potential unemployment consequences. It becomes imperative to adopt sustainable practices and manage resources effectively to ensure the region's resilience and prosperity in the face of environmental challenges.


Doi: 10.28991/CEJ-2023-09-11-01

Full Text: PDF


Environmental Sustainability; Climate Change Impacts; Agriculture; Financial Implications; Vulnerability; Ardabil Plain.


SafarianZengir, V., Sobhani, B., & Asghari, S. (2020). Modeling and Monitoring of Drought for forecasting it, to Reduce Natural hazards Atmosphere in western and north western part of Iran, Iran. Air Quality, Atmosphere & Health, 13(1), 119–130. doi:10.1007/s11869-019-00776-8.

Ozturk, T., Altinsoy, H., Türkeş, M., & Kurnaz, M. L. (2012). Simulation of temperature and precipitation climatology for the Central Asia CORDEX domain using RegCM 4.0. Climate Research, 52(1), 63–76. doi:10.3354/cr01082.

Toosi, A.S., Calbimonte, G. H., Nouri, H., & Alaghmand, S. (2019). River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. Journal of Hydrology, 574, 660–671. doi:10.1016/j.jhydrol.2019.04.072.

Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., & Abbaspour, K. C. (2019). The future of extreme climate in Iran. Scientific Reports, 9(1), 1464. doi:10.1038/s41598-018-38071-8.

Yazdani, M. H., Amininia, K., Safarianzengir, V., Soltani, N., & parhizkar, H. (2021). Analyzing climate change and its effects on drought and water scarcity (case study: Ardabil, Northwestern Province of Iran, Iran). Sustainable Water Resources Management, 7(2), 7. doi:10.1007/s40899-021-00494-z.

Ghorbani, M. A., Mahmoud Alilou, S., Javidan, S., & Naganna, S. R. (2021). Assessment of spatio-temporal variability of rainfall and mean air temperature over Ardabil province, Iran. SN Applied Sciences, 3(8). doi:10.1007/s42452-021-04698-y.

Barati, A. A., Azadi, H., Movahhed Moghaddam, S., Scheffran, J., & Dehghani Pour, M. (2023). Agricultural expansion and its impacts on climate change: evidence from Iran. Environment, Development and Sustainability. doi:10.1007/s10668-023-02926-6.

Hamedi, H., Alesheikh, A. A., Panahi, M., & Lee, S. (2022). Landslide susceptibility mapping using deep learning models in Ardabil province, Iran. Stochastic Environmental Research and Risk Assessment, 36(12), 4287–4310. doi:10.1007/s00477-022-02263-6.

Kuriachen, P., Korekallu Srinivasa, A., Sam, A. S., & Surendran Padmaja, S. (2022). The Economics of Climate Change in Agriculture. Innovative Approaches for Sustainable Development. Springer, Cham, Switzerland. doi:10.1007/978-3-030-90549-1_1.

Fatahi, A., Safarian Zengir, V., Sobhani, B., Kianian, M., & Ghahremani, A. (2022). Assessment and zoning of suitable climate for economic development of cultivation of Sunflower (Helianthus annuus) garden crop (Ardabil Province, Iran). European Journal of Horticultural Science, 87(1), 1–12. doi:10.17660/eJHS.2022/001.

Ghanbari, R., Sobhani, B., Aghaee, M., oshnooei nooshabadi, A., & Safarianzengir, V. (2021). Monitoring and evaluation of effective climate parameters on the cultivation and zoning of corn agricultural crop in Iran (case study: Ardabil province). Arabian Journal of Geosciences, 14(5), 1–11. doi:10.1007/s12517-021-06807-y.

Deihimfard, R., Rahimi-Moghaddam, S., Collins, B., & Azizi, K. (2022). Future climate change could reduce irrigated and rainfed wheat water footprint in arid environments. Science of the Total Environment, 807, 150991. doi:10.1016/j.scitotenv.2021.150991.

Satari, S.Y., & Khalilian, S. (2020). On Projecting Climate Change Impacts on Soybean Yield in Iran: An Econometric Approach. Environmental Processes, 7(1), 73–87. doi:10.1007/s40710-019-00400-y.

Tayyebi, M., Sharafati, A., Nazif, S., & Raziei, T. (2023). Assessment of adaptation scenarios for agriculture water allocation under climate change impact. Stochastic Environmental Research and Risk Assessment, 37(9), 3527–3549. doi:10.1007/s00477-023-02467-4.

Bahlool, Q. (2023). Tourist Attractions in Badakhshan Province, Its Role in the Local Economy. Integrated Journal for Research in Arts and Humanities, 3(1), 23–29. doi:10.55544/ijrah.3.1.5.

Roshan, G., Yousefi, R., & Fitchett, J. M. (2016). Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability. International Journal of Biometeorology, 60(1), 33–52. doi:10.1007/s00484-015-1003-0.

Sobhani, B., & Safarian, V. Z. (2020). Evaluation and zoning of environmental climatic parameters for tourism feasibility in northwestern Iran, located on the western border of Turkey. Modeling Earth Systems and Environment, 6(2), 853–864. doi:10.1007/s40808-020-00712-1.

Amininia, K., Abad, B., Safarianzengir, V., GhaffariGilandeh, A., & Sobhani, B. (2020). Investigation and analysis of climate comfort on people health tourism in Ardabil province, Iran. Air Quality, Atmosphere & Health, 13(11), 1293–1303. doi:10.1007/s11869-020-00883-x.

Arami Shamasbi, F., Kanooni, A., & Rasinezami, S. (2022). The effect of different management scenarios on quantitative changes in water resources of Balekhlichai river watershed and Ardabil plain aquifer using MODSIM model. Water and Irrigation Management, 11(4), 923–935.

Javan, K., Saleh, F. N., & Shahraiyni, H. T. (2013). The Influences of Climate Change on the Runoff of Gharehsoo River Watershed. American Journal of Climate Change, 2(4), 296–305. doi:10.4236/ajcc.2013.24030.

Najjar Ghabel, S., Zarghami, M., Akhbari, M., & Nadiri, A. A. (2019). Groundwater management in Ardabil plain using agent-based modeling. Iran-Water Resources Research, 15(3), 1-16. (In Persian).

Araste, M., Kaboli, H., & Yazdani, M. (2017). Assessing the impacts of meteorological drought on yield of rainfed wheat and barley (Case study: Khorasan Razavi province). Journal of Agricultural Meteorology, 5(1), 15-25. doi:10.22125/AGMJ.2017.54980.

Emadodin, I., Reinsch, T., & Taube, F. (2019). Drought and desertification in Iran. Hydrology, 6(3), 66. doi:10.3390/hydrology6030066.

Nourani, V., Ghareh Tapeh, A. H., Khodkar, K., & Huang, J. J. (2023). Assessing long-term climate change impact on spatiotemporal changes of groundwater level using autoregressive-based and ensemble machine learning models. Journal of Environmental Management, 336, 117653. doi:10.1016/j.jenvman.2023.117653.

Nouri-Khajebelagh, R., Khaledian, M., & Kavoosi-Kalashami, M. (2022). Determination of global water value to improve water management in Ardabil plain, Iran. Acta Geophysica, 70(2), 791–799. doi:10.1007/s11600-022-00741-7.

Anaraki, M. V., Farzin, S., Mousavi, S. F., & Karami, H. (2021). Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods. Water Resources Management, 35(1), 199–223. doi:10.1007/s11269-020-02719-w.

Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., & Nauss, T. (2015). Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spatial Statistics, 14, 91–113. doi:10.1016/j.spasta.2015.05.008.

El-Mahdy, M. E. S., El-Abd, W. A., & Morsi, F. I. (2021). Forecasting lake evaporation under a changing climate with an integrated artificial neural network model: A case study Lake Nasser, Egypt. Journal of African Earth Sciences, 179, 104191. doi:10.1016/j.jafrearsci.2021.104191.

Amirhossien, F., Alireza, F., Kazem, J., & Mohammadbagher, S. (2015). A Comparison of ANN and HSPF Models for Runoff Simulation in Balkhichai River Watershed, Iran. American Journal of Climate Change, 4(3), 203–216. doi:10.4236/ajcc.2015.43016.

Javan, K., Lialestani, M. R. F. H., Ashouri, H., & Moosavian, N. (2015). Assessment of the impacts of nonstationarity on watershed runoff using artificial neural networks: a case study in Ardebil, Iran. Modeling Earth Systems and Environment, 1(3), 1–10. doi:10.1007/s40808-015-0030-5.

Luk, K. C., Ball, J. E., & Sharma, A. (2000). A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology, 227(1–4), 56–65. doi:10.1016/S0022-1694(99)00165-1.

Alasali, F., Tawalbeh, R., Ghanem, Z., Mohammad, F., & Alghazzawi, M. (2021). A sustainable early warning system using rolling forecasts based on ANN and golden ratio optimization methods to accurately predict real-time water levels and flash flood. Sensors, 21(13), 4598. doi:10.3390/s21134598.

Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A., & Geneletti, D. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12(1), 1–14. doi:10.1007/s13201-021-01545-8.

Dhamodaran, S., & Lakshmi, M. (2021). Comparative analysis of spatial interpolation with climatic changes using inverse distance method. Journal of Ambient Intelligence and Humanized Computing, 12(6), 6725–6734. doi:10.1007/s12652-020-02296-1.

Taie Semiromi, M., & Koch, M. (2019). Analysis of spatio-temporal variability of surface–groundwater interactions in the Gharehsoo river basin, Iran, using a coupled SWAT-MODFLOW model. Environmental Earth Sciences, 78(6), 1–21. doi:10.1007/s12665-019-8206-3.

Anshuka, A., van Ogtrop, F. F., & Willem Vervoort, R. (2019). Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis. Natural Hazards, 97(2), 955–977. doi:10.1007/s11069-019-03665-6.

Naresh Kumar, M., Murthy, C. S., Sesha sai, M. V. R., & Roy, P. S. (2009). On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications, 16(3), 381–389. doi:10.1002/met.136.

Wang, Q., Zhang, R., Qi, J., Zeng, J., Wu, J., Shui, W., Wu, X., & Li, J. (2022). An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Scientific Data, 9(1), 124. doi:10.1038/s41597-022-01201-z.

Dikshit, A., Pradhan, B., & Alamri, A. M. (2020). Short-term spatio-temporal drought forecasting using random forests model at New South Wales, Australia. Applied Sciences (Switzerland), 10(12), 4254. doi:10.3390/app10124254.

Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140–145. doi:10.1016/j.advwatres.2014.11.012.

Elbeltagi, A., Kumar, M., Kushwaha, N. L., Pande, C. B., Ditthakit, P., Vishwakarma, D. K., & Subeesh, A. (2023). Drought indicator analysis and forecasting using data driven models: case study in Jaisalmer, India. Stochastic Environmental Research and Risk Assessment, 37(1), 113–131. doi:10.1007/s00477-022-02277-0.

Luo, B., Liu, X., Zhang, F., & Guo, P. (2021). Optimal management of cultivated land coupling remote sensing-based expected irrigation water forecasting. Journal of Cleaner Production, 308, 127370. doi:10.1016/j.jclepro.2021.127370.

Lotfirad, M., Esmaeili-Gisavandani, H., & Adib, A. (2022). Drought monitoring and prediction using SPI, SPEI, and random forest model in various climates of Iran. Journal of Water and Climate Change, 13(2), 383–406. doi:10.2166/wcc.2021.287.

Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting. Computers and Electronics in Agriculture, 152, 149–165. doi:10.1016/j.compag.2018.07.013.

Patil, R., Polisgowdar, B. S., Rathod, S., Bandumula, N., Mustac, I., Srinivasa Reddy, G. V., Wali, V., Satishkumar, U., Rao, S., Kumar, A., & Ondrasek, G. (2023). Spatiotemporal Characterization of Drought Magnitude, Severity, and Return Period at Various Time Scales in the Hyderabad Karnataka Region of India. Water (Switzerland), 15(13), 2483. doi:10.3390/w15132483.

Sobhani, B., & Zengir, V. S. (2020). Modeling, monitoring and forecasting of drought in south and southwestern Iran, Iran. Modeling Earth Systems and Environment, 6(1), 63–71. doi:10.1007/s40808-019-00655-2.

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. doi:10.1175/2009JCLI2909.1.

Statistical Centre of Iran. (2019). The concise report of the nationwide income-espense census of Iranian urban and rural households. Statistical Centre of Iran, Tehran, Iran. Available online: https://www.amar.org.ir/Portals/0/News/1398/ch-hvd97.pdf (accessed on May 2023).

SCI. (2023). Statistical Centre of Iran, Tehran, Iran. Available online: https://www.amar.org.ir/english (accessed on May 2023).

Karimi, Z. (2018). Public Works Programs as a Strong Means for Land and Water Conservation in Iran. Full Employment and Social Justice, 109–138. doi:10.1007/978-3-319-66376-0_5.

Mesgaran, M. B., Madani, K., Hashemi, H., & Azadi, P. (2017). Iran’s Land Suitability for Agriculture. Scientific Reports, 7(1), 7670. doi:10.1038/s41598-017-08066-y.

Habibi, F., Rahmati, M., & Karimi, A. (2018). Contribution of tourism to economic growth in Iran’s Provinces: GDM approach. Future Business Journal, 4(2), 261–271. doi:10.1016/j.fbj.2018.09.001.

Nouri-Khajehbolagh, R., Khaledian, M., & Kavoosi-Kalashami, M. (2020). Comparison of water productivity indicators for major crops in Ardabil Plain. Iranian Journal of Irrigation & Drainage, 14(3), 894-904.

Legates, D. R., & Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge‐corrected, global precipitation. International Journal of Climatology, 10(2), 111-127. Portico. doi:10.1002/joc.3370100202.

Sevruk, B., Ondrás, M., & Chvíla, B. (2009). The WMO precipitation measurement intercomparisons. Atmospheric Research, 92(3), 376–380. doi:10.1016/j.atmosres.2009.01.016.

Saghafian, B., Tajrishy, M., Shahraini, H. T., & Jalali, N. (2003). Modeling spatial variability of daily rainfall in southwest Iran. In Scientia Iranica (Vol. 10, Issue 2, pp. 164–174).

Doulabian, S., Golian, S., Toosi, A. S., & Murphy, C. (2021). Evaluating the effects of climate change on precipitation and temperature for iran using rcp scenarios. Journal of Water and Climate Change, 12(1), 166–184. doi:10.2166/wcc.2020.114.

Gunathilake, M. B., Karunanayake, C., Gunathilake, A. S., Marasingha, N., Samarasinghe, J. T., Bandara, I. M., & Rathnayake, U. (2021). Hydrological Models and Artificial Neural Networks (ANNs) to Simulate Streamflow in a Tropical Catchment of Sri Lanka. Applied Computational Intelligence and Soft Computing, 2021, 1–9. doi:10.1155/2021/6683389.

Javan, K., Lialestani, M. R. F. H., & Nejadhossein, M. (2015). A comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershed, Iran. Modeling Earth Systems and Environment, 1(4). doi:10.1007/s40808-015-0042-1.

Molajou, A., Nourani, V., Afshar, A., Khosravi, M., & Brysiewicz, A. (2021). Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling. Water Resources Management, 35(8), 2369–2384. doi:10.1007/s11269-021-02818-2.

Govindaraju, R. S. (2000). Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(asce)1084-0699(2000)5:2(115).

Ouma, Y. O., Cheruyot, R., & Wachera, A. N. (2022). Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basin. Complex & Intelligent Systems, 8(1), 213–236. doi:10.1007/s40747-021-00365-2.

Yu, N., & Haskins, T. (2021). Bagging machine learning algorithms: A generic computing framework based on machine-learning methods for regional rainfall forecasting in upstate New York. Informatics, 8(3), 47. doi:10.3390/informatics8030047.

di Piazza, A., Conti, F. Lo, Noto, L. V., Viola, F., & La Loggia, G. (2011). Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. International Journal of Applied Earth Observation and Geoinformation, 13(3), 396–408. doi:10.1016/j.jag.2011.01.005.

Tsesmelis, D. E., Leveidioti, I., Karavitis, C. A., Kalogeropoulos, K., Vasilakou, C. G., Tsatsaris, A., & Zervas, E. (2023). Spatiotemporal Application of the Standardized Precipitation Index (SPI) in the Eastern Mediterranean. Climate, 11(5), 95. doi:10.3390/cli11050095.

Irawan, A. N. R., Komori, D., & Hendrawan, V. S. A. (2023). Correlation analysis of agricultural drought risk on wet farming crop and meteorological drought index in the tropical-humid region. Theoretical and Applied Climatology, 153(1–2), 227–240. doi:10.1007/s00704-023-04461-w.

Moccia, B., Mineo, C., Ridolfi, E., Russo, F., & Napolitano, F. (2022). SPI-Based Drought Classification in Italy: Influence of Different Probability Distribution Functions. Water (Switzerland), 14(22), 3668. doi:10.3390/w14223668.

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17-22 January, 1993, Anaheim, United States.

Park, C., Min, S. K., Lee, D., Cha, D. H., Suh, M. S., Kang, H. S., Hong, S. Y., Lee, D. K., Baek, H. J., Boo, K. O., & Kwon, W. T. (2016). Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dynamics, 46(7–8), 2469–2486. doi:10.1007/s00382-015-2713-z.

Yang, Y., Bai, L., Wang, B., Wu, J., & Fu, S. (2019). Reliability of the global climate models during 1961–1999 in arid and semiarid regions of China. Science of the Total Environment, 667, 271–286. doi:10.1016/j.scitotenv.2019.02.188.

Leirvik, T., & Yuan, M. (2021). A Machine Learning Technique for Spatial Interpolation of Solar Radiation Observations. Earth and Space Science, 8(4), 2020 001527. doi:10.1029/2020EA001527.

Ciscar, J. C., Rising, J., Kopp, R. E., & Feyen, L. (2019). Assessing future climate change impacts in the EU and the USA: Insights and lessons from two continental-scale projects. Environmental Research Letters, 14(8), 84010. doi:10.1088/1748-9326/ab281e.

He, Q., Wang, M., Liu, K., Li, K., & Jiang, Z. (2022). GPRChinaTemp1km: A high-resolution monthly air temperature data set for China (1951-2020) based on machine learning. Earth System Science Data, 14(7), 3273–3292. doi:10.5194/essd-14-3273-2022.

Amininia, K., Abad, B., Safarianzengir, V., GhaffariGilandeh, A., & Sobhani, B. (2020). Investigation and analysis of climate comfort on people health tourism in Ardabil province, Iran. Air Quality, Atmosphere & Health, 13(11), 1293–1303. doi:10.1007/s11869-020-00883-x.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-01


  • There are currently no refbacks.

Copyright (c) 2023 Kazem Javan, Mehrdad Mirabi, Sajad Ahmad Hamidi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.