Improving CBR Parameter of Expansive Soil Using the Carbonate Precipitation Method with Tofu Waste as a Biocatalyst
Vol. 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Downloads
Doi: 10.28991/CEJ-SP2023-09-013
Full Text: PDF
Putra, H., Arrazzaq, A. B., Hidayatullah, R. M. I., Lamuse, M., Ananda, F. R., & Prayoga, A. (2023). Improving CBR Parameter of Expansive Soil Using the Carbonate Precipitation Method with Tofu Waste as a Biocatalyst. Civil Engineering Journal, 9, 163–172. https://doi.org/10.28991/CEJ-SP2023-09-013
[1] PUPR (2023). National Road Surface Conditions: Ministry of Public Works and Public Housing of Republic of Indonesia. Available online: https://data.pu.go.id/dataset/kondisi-permukaan-jalan-nasional (accessed on October 2023).
[2] Ijaz, N., Ye, W., Rehman, Z. Ur, Ijaz, Z., & Junaid, M. F. (2023). New binary paper/wood industry waste blend for solidification/stabilisation of problematic soil subgrade: macro-micro study. Road Materials and Pavement Design, 24(5), 1215–1232. doi:10.1080/14680629.2022.2064905.
[3] Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Ijaz, Z., & Rehman, Z. Ur. (2022). Strengthening potential of xanthan gum biopolymer in stabilizing weak subgrade soil. Clean Technologies and Environmental Policy, 24(9), 2719–2738. doi:10.1007/s10098-022-02347-5.
[4] ESDM (2019). Atlas sebaran batu lempung bermasalah, Bandung: Ministry of Energy and Mineral Resources of the Republic of Indonesia. Available online: https://www.esdm.go.id/assets/media/content/content-atlas-sebaran-batu-lempung-bermasalah.pdf (accessed on October 2023).
[5] Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423–440. doi:10.1016/j.jrmge.2018.08.013.
[6] Ali, M., Aziz, M., Hamza, M., & Madni, M. F. (2020). Engineering properties of expansive soil treated with polypropylene fibers. Geomechanics and Engineering, 22(3), 227–236. doi:10.12989/gae.2020.22.3.227.
[7] Khemissa, M., & Mahamedi, A. (2014). Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science, 95, 104–110. doi:10.1016/j.clay.2014.03.017.
[8] Suaryana, N. (2016). Performance evaluation of stone matrix asphalt using Indonesian natural rock asphalt as stabilizer. International Journal of Pavement Research and Technology, 9(5), 387-392. doi:10.1016/j.ijprt.2016.09.007.
[9] Djellali, A., Houam, A., Saghafi, B., Hamdane, A., & Benghazi, Z. (2017). Static Analysis of Flexible Pavements over Expansive Soils. International Journal of Civil Engineering, 15(3), 391–400. doi:10.1007/s40999-016-0058-6.
[10] Zada, U., Jamal, A., Iqbal, M., Eldin, S. M., Almoshaogeh, M., Bekkouche, S. R., & Almuaythir, S. (2023). Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18, e01985. doi:10.1016/j.cscm.2023.e01985.
[11] Aziz, M., Sheikh, F. N., Qureshi, M. U., Rasool, A. M., & Irfan, M. (2021). Experimental Study on Endurance Performance of Lime and Cement-Treated Cohesive Soil. KSCE Journal of Civil Engineering, 25(9), 3306–3318. doi:10.1007/s12205-021-2154-7.
[12] Simatupang, M., Mangalla, L. K., Edwin, R. S., Putra, A. A., Azikin, M. T., Aswad, N. H., & Mustika, W. (2020). The mechanical properties of fly-ash-stabilized sands. Geosciences (Switzerland), 10(4), 132. doi:10.3390/geosciences10040132.
[13] Nalbantoǧlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. doi:10.1016/j.conbuildmat.2004.03.011.
[14] Kim, Y. sang, Tran, T. Q., Kang, G. o., & Do, T. M. (2019). Stabilization of a residual granitic soil using various new green binders. Construction and Building Materials, 223, 724–735. doi:10.1016/j.conbuildmat.2019.07.019.
[15] Tran, T. Q., Kim, Y. S., Kang, G. O., Dinh, B. H., & Do, T. M. (2019). Feasibility of Reusing Marine Dredged Clay Stabilized by a Combination of By-Products in Coastal Road Construction. Transportation Research Record, 2673(12), 519–528. doi:10.1177/0361198119868196.
[16] Soltani, A., Taheri, A., Khatibi, M., & Estabragh, A. R. (2017). Swelling potential of a stabilized expansive soil: a comparative experimental study. Geotechnical and Geological Engineering, 35, 1717-1744. doi:10.1007/s10706-017-0204-1.
[17] Putra, H., & Yudhistira, I. (2022). Improvement of the California Bearing Ratio of Peat Soil Using Soybean Crude Urease Calcite Precipitation. Civil Engineering Journal (Iran), 8(11), 2411–2423. doi:10.28991/CEJ-2022-08-11-04.
[18] Meisnnehr, D., Putra, H., & Yasuhara, H. (2021). Utilization of soybean powder as the additional material on calcite precipitation method for improving the strength of liquefiable soil. IOP Conference Series: Earth and Environmental Science, 622(1), 12029. doi:10.1088/1755-1315/622/1/012029.
[19] Putra, H., Yasuhara, H., Erizal, Sutoyo, & Fauzan, M. (2020). Review of enzyme-induced calcite precipitation as a ground-improvement technique. Infrastructures, 5(8), 66. doi:10.3390/INFRASTRUCTURES5080066.
[20] Putra, H., Erizal, Sutoyo, Simatupang, M., & Yanto, D. H. Y. (2021). Improvement of organic soil shear strength through calcite precipitation method using soybeans as bio-catalyst. Crystals, 11(9), 1–14. doi:10.3390/cryst11091044.
[21] Pratama, G. B. S., Yasuhara, H., Kinoshita, N., & Putra, H. (2021). Application of soybean powder as urease enzyme replacement on EICP method for soil improvement technique. IOP Conference Series: Earth and Environmental Science, 622(1), 12035. doi:10.1088/1755-1315/622/1/012035.
[22] Statistik Pertanian. (2018). Food Consumption Statistics. Center for Agricultural Data and Information System, Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian, Jakarta, Indonesia.
[23] Mawardi, M., Sarjani, T. M., & Fadilah, F. (2019). Training on the Utilization of Tofu Drugs Waste as a Food Product Fit for Consumption in Meurandeh Dayah Village. Global Science Society: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 1(1), 40-44.
[24] Ministry of Health of Indonesia (2023). Tabel Komposisi Pangan Indonesia. Jakarta, Indonesia: Kemenkes RI, 2018. Available online: https://www.kemkes.go.id/id/home (accessed on May 2023).
[25] ASTM D2487-06. (2010). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-06.
[26] Rangan, P. R., & Arrang, A. T. (2021). Stabilisasi Tanah Lempung Ekspansif dengan Limbah Keramik. Journal Dynamic Saint, 5(2), 945–950. doi:10.47178/dynamicsaint.v5i2.1098. (In Indonesian).
[27] Hangge, E. E., Bella, R. A., & Ullu, M. C. (2021). Utilization of fly ash for stabilization of expansive clay subgrade. Jurnal Teknik Sipil, 10(1), 89-102. (In Indonesian).
[28] SNI 03-6795-2002. (2002). Test Method for Determining Expansive Soil. Badan Standardisasi Nasional Indonesia, Jakarta, Indonesia. (In Indonesian).
[29] Putra, H., Yasuhara, H., Kinoshita, N. E., & Sudibyo, T. (2018). Improving Shear Strength Parameters of Sandy Soil using Enzyme-Mediated Calcite Precipitation Technique. Civil Engineering Dimension, 20(2), 91–95. doi:10.9744/ced.20.2.91-95.
[30] Sharma, A., & Ramkrishnan, R. (2016). Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspectives in Science, 8, 198-202. doi:10.1016/j.pisc.2016.03.017.
[31] Pratama, E. M., Putra, H., & Syarif, F. (2021). Application of calcite precipitation method to increase the shear strength of peat soil. IOP Conference Series: Earth and Environmental Science, 871(1), 12058. doi:10.1088/1755-1315/871/1/012058.
[32] ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.
[33] Oktafiani, P. G., Putra, H., Erizal, & Yanto, D. H. Y. (2022). Application of technical grade reagent in soybean-crude urease calcite precipitation (SCU-CP) method for soil improvement technique. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103292. doi:10.1016/j.pce.2022.103292.
[34] Akkerman, M., Rauh, V. M., Christensen, M., Johansen, L. B., Hammershí¸j, M., & Larsen, L. B. (2016). Effect of heating strategies on whey protein denaturation-Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Dairy Science, 99(1), 152–166. doi:10.3168/jds.2015-9924.
[35] Oktafiani, P. G., Putra, H., & Sutoyo, S. (2022). Pengaruh Dissolved Organic Carbon (DOC) pada Efektivitas Perbaikan Tanah Gambut dengan Metode Calcite Precipitation. Jurnal Aplikasi Teknik Sipil, 20(1), 109. doi:10.12962/j2579-891x.v20i1.9637.
[36] Lofianda, L., Putra, H., Erizal, Sutoyo, & Yasuhara, H. (2021). Potentially of soybean as bio-catalyst in calcite precipitation methods for improving the strength of sandy soil. Civil Engineering and Architecture, 9(7), 2317–2325. doi:10.13189/cea.2021.090719.
[37] Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. doi:10.1080/01490450701436505.
[38] Almajed, A., Khodadadi Tirkolaei, H., & Kavazanjian Jr, E. (2018). Baseline investigation on enzyme-induced calcium carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 144(11), 04018081. doi:10.1061/(ASCE)GT.1943-5606.000197.
[39] Nagaraj, H. B., & Suresh, M. R. (2018). Influence of clay mineralogy on the relationship of CBR of fine-grained soils with their index and engineering properties. Transportation Geotechnics, 15, 29–38. doi:10.1016/j.trgeo.2018.02.004.
[40] SNI 03-1732-1989. (1989). Procedures for Planning Highway Flexible Pavement Thickness Using Component Method Analysis. Badan Standardisasi Nasional Indonesia, Jakarta, Indonesia. (In Indonesian).
[41] Direktorat Jenderal Bina Marga. (2017). Road Pavement Design Manual revision 201. Ministry of Public Works and Public Housing Jakarta, Jakarta, Indonesia. (In Indonesian).
[42] Putra, H., Yasuhara, H., Kinoshita, N., & Hirata, A. (2017). Optimization of enzyme-mediated calcite precipitation as a soil-improvement technique: The effect of aragonite and gypsum on the mechanical properties of treated sand. Crystals, 7(2), 59. doi:10.3390/cryst7020059.
[43] Putra, H., Yasuhara, H., & Kinoshita, N. (2017). Applicability of natural zeolite for NH-forms removal in enzyme-mediated calcite precipitation technique. Geosciences (Switzerland), 7(3), 1–14. doi:10.3390/geosciences7030061.
[2] Ijaz, N., Ye, W., Rehman, Z. Ur, Ijaz, Z., & Junaid, M. F. (2023). New binary paper/wood industry waste blend for solidification/stabilisation of problematic soil subgrade: macro-micro study. Road Materials and Pavement Design, 24(5), 1215–1232. doi:10.1080/14680629.2022.2064905.
[3] Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Ijaz, Z., & Rehman, Z. Ur. (2022). Strengthening potential of xanthan gum biopolymer in stabilizing weak subgrade soil. Clean Technologies and Environmental Policy, 24(9), 2719–2738. doi:10.1007/s10098-022-02347-5.
[4] ESDM (2019). Atlas sebaran batu lempung bermasalah, Bandung: Ministry of Energy and Mineral Resources of the Republic of Indonesia. Available online: https://www.esdm.go.id/assets/media/content/content-atlas-sebaran-batu-lempung-bermasalah.pdf (accessed on October 2023).
[5] Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423–440. doi:10.1016/j.jrmge.2018.08.013.
[6] Ali, M., Aziz, M., Hamza, M., & Madni, M. F. (2020). Engineering properties of expansive soil treated with polypropylene fibers. Geomechanics and Engineering, 22(3), 227–236. doi:10.12989/gae.2020.22.3.227.
[7] Khemissa, M., & Mahamedi, A. (2014). Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science, 95, 104–110. doi:10.1016/j.clay.2014.03.017.
[8] Suaryana, N. (2016). Performance evaluation of stone matrix asphalt using Indonesian natural rock asphalt as stabilizer. International Journal of Pavement Research and Technology, 9(5), 387-392. doi:10.1016/j.ijprt.2016.09.007.
[9] Djellali, A., Houam, A., Saghafi, B., Hamdane, A., & Benghazi, Z. (2017). Static Analysis of Flexible Pavements over Expansive Soils. International Journal of Civil Engineering, 15(3), 391–400. doi:10.1007/s40999-016-0058-6.
[10] Zada, U., Jamal, A., Iqbal, M., Eldin, S. M., Almoshaogeh, M., Bekkouche, S. R., & Almuaythir, S. (2023). Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18, e01985. doi:10.1016/j.cscm.2023.e01985.
[11] Aziz, M., Sheikh, F. N., Qureshi, M. U., Rasool, A. M., & Irfan, M. (2021). Experimental Study on Endurance Performance of Lime and Cement-Treated Cohesive Soil. KSCE Journal of Civil Engineering, 25(9), 3306–3318. doi:10.1007/s12205-021-2154-7.
[12] Simatupang, M., Mangalla, L. K., Edwin, R. S., Putra, A. A., Azikin, M. T., Aswad, N. H., & Mustika, W. (2020). The mechanical properties of fly-ash-stabilized sands. Geosciences (Switzerland), 10(4), 132. doi:10.3390/geosciences10040132.
[13] Nalbantoǧlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. doi:10.1016/j.conbuildmat.2004.03.011.
[14] Kim, Y. sang, Tran, T. Q., Kang, G. o., & Do, T. M. (2019). Stabilization of a residual granitic soil using various new green binders. Construction and Building Materials, 223, 724–735. doi:10.1016/j.conbuildmat.2019.07.019.
[15] Tran, T. Q., Kim, Y. S., Kang, G. O., Dinh, B. H., & Do, T. M. (2019). Feasibility of Reusing Marine Dredged Clay Stabilized by a Combination of By-Products in Coastal Road Construction. Transportation Research Record, 2673(12), 519–528. doi:10.1177/0361198119868196.
[16] Soltani, A., Taheri, A., Khatibi, M., & Estabragh, A. R. (2017). Swelling potential of a stabilized expansive soil: a comparative experimental study. Geotechnical and Geological Engineering, 35, 1717-1744. doi:10.1007/s10706-017-0204-1.
[17] Putra, H., & Yudhistira, I. (2022). Improvement of the California Bearing Ratio of Peat Soil Using Soybean Crude Urease Calcite Precipitation. Civil Engineering Journal (Iran), 8(11), 2411–2423. doi:10.28991/CEJ-2022-08-11-04.
[18] Meisnnehr, D., Putra, H., & Yasuhara, H. (2021). Utilization of soybean powder as the additional material on calcite precipitation method for improving the strength of liquefiable soil. IOP Conference Series: Earth and Environmental Science, 622(1), 12029. doi:10.1088/1755-1315/622/1/012029.
[19] Putra, H., Yasuhara, H., Erizal, Sutoyo, & Fauzan, M. (2020). Review of enzyme-induced calcite precipitation as a ground-improvement technique. Infrastructures, 5(8), 66. doi:10.3390/INFRASTRUCTURES5080066.
[20] Putra, H., Erizal, Sutoyo, Simatupang, M., & Yanto, D. H. Y. (2021). Improvement of organic soil shear strength through calcite precipitation method using soybeans as bio-catalyst. Crystals, 11(9), 1–14. doi:10.3390/cryst11091044.
[21] Pratama, G. B. S., Yasuhara, H., Kinoshita, N., & Putra, H. (2021). Application of soybean powder as urease enzyme replacement on EICP method for soil improvement technique. IOP Conference Series: Earth and Environmental Science, 622(1), 12035. doi:10.1088/1755-1315/622/1/012035.
[22] Statistik Pertanian. (2018). Food Consumption Statistics. Center for Agricultural Data and Information System, Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian, Jakarta, Indonesia.
[23] Mawardi, M., Sarjani, T. M., & Fadilah, F. (2019). Training on the Utilization of Tofu Drugs Waste as a Food Product Fit for Consumption in Meurandeh Dayah Village. Global Science Society: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 1(1), 40-44.
[24] Ministry of Health of Indonesia (2023). Tabel Komposisi Pangan Indonesia. Jakarta, Indonesia: Kemenkes RI, 2018. Available online: https://www.kemkes.go.id/id/home (accessed on May 2023).
[25] ASTM D2487-06. (2010). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-06.
[26] Rangan, P. R., & Arrang, A. T. (2021). Stabilisasi Tanah Lempung Ekspansif dengan Limbah Keramik. Journal Dynamic Saint, 5(2), 945–950. doi:10.47178/dynamicsaint.v5i2.1098. (In Indonesian).
[27] Hangge, E. E., Bella, R. A., & Ullu, M. C. (2021). Utilization of fly ash for stabilization of expansive clay subgrade. Jurnal Teknik Sipil, 10(1), 89-102. (In Indonesian).
[28] SNI 03-6795-2002. (2002). Test Method for Determining Expansive Soil. Badan Standardisasi Nasional Indonesia, Jakarta, Indonesia. (In Indonesian).
[29] Putra, H., Yasuhara, H., Kinoshita, N. E., & Sudibyo, T. (2018). Improving Shear Strength Parameters of Sandy Soil using Enzyme-Mediated Calcite Precipitation Technique. Civil Engineering Dimension, 20(2), 91–95. doi:10.9744/ced.20.2.91-95.
[30] Sharma, A., & Ramkrishnan, R. (2016). Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspectives in Science, 8, 198-202. doi:10.1016/j.pisc.2016.03.017.
[31] Pratama, E. M., Putra, H., & Syarif, F. (2021). Application of calcite precipitation method to increase the shear strength of peat soil. IOP Conference Series: Earth and Environmental Science, 871(1), 12058. doi:10.1088/1755-1315/871/1/012058.
[32] ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.
[33] Oktafiani, P. G., Putra, H., Erizal, & Yanto, D. H. Y. (2022). Application of technical grade reagent in soybean-crude urease calcite precipitation (SCU-CP) method for soil improvement technique. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103292. doi:10.1016/j.pce.2022.103292.
[34] Akkerman, M., Rauh, V. M., Christensen, M., Johansen, L. B., Hammershí¸j, M., & Larsen, L. B. (2016). Effect of heating strategies on whey protein denaturation-Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Dairy Science, 99(1), 152–166. doi:10.3168/jds.2015-9924.
[35] Oktafiani, P. G., Putra, H., & Sutoyo, S. (2022). Pengaruh Dissolved Organic Carbon (DOC) pada Efektivitas Perbaikan Tanah Gambut dengan Metode Calcite Precipitation. Jurnal Aplikasi Teknik Sipil, 20(1), 109. doi:10.12962/j2579-891x.v20i1.9637.
[36] Lofianda, L., Putra, H., Erizal, Sutoyo, & Yasuhara, H. (2021). Potentially of soybean as bio-catalyst in calcite precipitation methods for improving the strength of sandy soil. Civil Engineering and Architecture, 9(7), 2317–2325. doi:10.13189/cea.2021.090719.
[37] Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. doi:10.1080/01490450701436505.
[38] Almajed, A., Khodadadi Tirkolaei, H., & Kavazanjian Jr, E. (2018). Baseline investigation on enzyme-induced calcium carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 144(11), 04018081. doi:10.1061/(ASCE)GT.1943-5606.000197.
[39] Nagaraj, H. B., & Suresh, M. R. (2018). Influence of clay mineralogy on the relationship of CBR of fine-grained soils with their index and engineering properties. Transportation Geotechnics, 15, 29–38. doi:10.1016/j.trgeo.2018.02.004.
[40] SNI 03-1732-1989. (1989). Procedures for Planning Highway Flexible Pavement Thickness Using Component Method Analysis. Badan Standardisasi Nasional Indonesia, Jakarta, Indonesia. (In Indonesian).
[41] Direktorat Jenderal Bina Marga. (2017). Road Pavement Design Manual revision 201. Ministry of Public Works and Public Housing Jakarta, Jakarta, Indonesia. (In Indonesian).
[42] Putra, H., Yasuhara, H., Kinoshita, N., & Hirata, A. (2017). Optimization of enzyme-mediated calcite precipitation as a soil-improvement technique: The effect of aragonite and gypsum on the mechanical properties of treated sand. Crystals, 7(2), 59. doi:10.3390/cryst7020059.
[43] Putra, H., Yasuhara, H., & Kinoshita, N. (2017). Applicability of natural zeolite for NH-forms removal in enzyme-mediated calcite precipitation technique. Geosciences (Switzerland), 7(3), 1–14. doi:10.3390/geosciences7030061.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
