Comparative Study of Machine Learning Algorithms in Classifying HRV for the Driver's Physiological Condition
Downloads
Doi: 10.28991/CEJ-2023-09-09-013
Full Text: PDF
[2] Arakawa, T. (2021). A review of heartbeat detection systems for automotive applications. Sensors, 21(18), 6112. doi:10.3390/s21186112.
[3] Bhardwaj, R., & Balasubramanian, V. (2019). Viability of Cardiac Parameters Measured Unobtrusively Using Capacitive Coupled Electrocardiography (cECG) to Estimate Driver Performance. IEEE Sensors Journal, 19(11), 4321–4330. doi:10.1109/JSEN.2019.2898450.
[4] Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. doi:10.1093/oxfordjournals.eurheartj.a014868.
[5] Castaldo, R., Montesinos, L., Melillo, P., James, C., & Pecchia, L. (2019). Ultra-short term HRV features as surrogates of short term HRV: A case study on mental stress detection in real life. BMC Medical Informatics and Decision Making, 19(1), 1-13. doi:10.1186/s12911-019-0742-y.
[6] de Oliveira Júnior, F. A., Pereira, R. A., Silva, A. S., de Brito Alves, J. L., Costa-Silva, J. H., Braga, V. A., & Balarini, C. M. (2022). Different acquisition systems for heart rate variability analysis may lead to diverse outcomes. Brazilian Journal of Medical and Biological Research, 55. doi:10.1590/1414-431X2021e11720.
[7] Geronikolou, S. A., Chrousos, G. P., & Cokkinos, D. V. (2021). Heart Rate Variability Components in Electromagnetic Hypersensitive Persons. In Handbook of Computational Neurodegeneration, 1–10. Springer International Publishing. doi:10.1007/978-3-319-75479-6_54-1.
[8] Aswathi, C. D., Mathew, N. A., Riyas, K. S., & Jose, R. (2021). Comparison of Machine Learning Algorithms for Heart Rate Variability Based Driver Drowsiness Detection. 2021 2nd Global Conference for Advancement in Technology (GCAT). doi:10.1109/gcat52182.2021.9587733.
[9] Benchekroun, M., Chevallier, B., Istrate, D., Zalc, V., & Lenne, D. (2022). Preprocessing Methods for Ambulatory HRV Analysis Based on HRV Distribution, Variability and Characteristics (DVC). Sensors, 22(5), 1984. doi:10.3390/s22051984.
[10] Bhor, P., Sodhi, G. S., & Sing, D. (2019). Classification of Heart Rate Variability through Machine Learning. International Journal of Electronic Engineering, 11(2), 73–80.
[11] Bousseljot, R.-D. (1995). Use of the PTB's CARDIODAT ECG signal database via the Internet [in German]. Biomedical Engineering, 40. doi:10.13026/C28C71.
[12] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), 215– 220. doi:10.1161/01.cir.101.23.e215.
[13] Hantono, B. S., Nugroho, L. E., & Santosa, P. I. (2020). Mental stress detection via heart rate variability using machine learning. International Journal on Electrical Engineering and Informatics, 12(3), 431–444. doi:10.15676/ijeei.2020.12.3.3.
[14] Hasan, M. M., Watling, C. N., & Larue, G. S. (2022). Physiological signal-based drowsiness detection using machine learning: Singular and hybrid signal approaches. Journal of Safety Research, 80, 215–225. doi:10.1016/j.jsr.2021.12.001.
[15] Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6(2), 156–166. doi:10.1109/TITS.2005.848368.
[16] Hejjel, L. (2004). Suppression of power-line interference by analog notch filtering in the ECG signal for heart rate variability analysis: to do or not to do?. Medical Science Monitor, 10(1), MT6-MT13.
[17] Huang, J., Liu, Y., & Peng, X. (2022). Recognition of driver's mental workload based on physiological signals, a comparative study. Biomedical Signal Processing and Control, 71. doi:10.1016/j.bspc.2021.103094.
[18] Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlstrom, C. (2021). Heart Rate Variability for Classification of Alert versus Sleep Deprived Drivers in Real Road Driving Conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3316–3325. doi:10.1109/TITS.2020.2981941.
[19] Ishaque, S., Khan, N., & Krishnan, S. (2021). Trends in Heart-Rate Variability Signal Analysis. Frontiers in Digital Health, 3. doi:10.3389/fdgth.2021.639444.
[20] Iwamoto, H., Hori, K., Fujiwara, K., & Kano, M. (2021). Real-driving-implementable drowsy driving detection method using heart rate variability based on long short-term memory and autoencoder. IFAC-PapersOnLine, 54(15), 526–531. doi:10.1016/j.ifacol.2021.10.310.
[21] Kakaria, S., Bigné, E., Catrambone, V., & Valenza, G. (2022). Heart rate variability in marketing research: A systematic review and methodological perspectives. Psychology & Marketing, 40(1), 190–208. doi:10.1002/mar.21734.
[22] Iqbal, T., Elahi, A., Wijns, W., & Shahzad, A. (2022). Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection. Frontiers in Medical Technology, 4. doi:10.3389/fmedt.2022.782756.
[23] Koay, H. V., Chuah, J. H., Chow, C. O., & Chang, Y. L. (2022). Detecting and recognizing driver distraction through various data modality using machine learning: A review, recent advances, simplified framework and open challenges (2014–2021). Engineering Applications of Artificial Intelligence, 115, 105309. doi:10.1016/j.engappai.2022.105309.
[24] Liu, S., Koch, K., Zhou, Z., Maritsch, M., He, X., Fleisch, E., & Wortmann, F. (2022). Toward Nonintrusive Camera-Based Heart Rate Variability Estimation in the Car under Naturalistic Condition. IEEE Internet of Things Journal, 9(14), 11699–11711. doi:10.1109/JIOT.2021.3131742.
[25] Lopez-Martinez, D., El-Haouij, N., & Picard, R. (2019). Detection of Real-World Driving-Induced Affective State Using Physiological Signals and Multi-View Multi-Task Machine Learning. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). doi:10.1109/aciiw.2019.8925190.
[26] Manstetten, D., Beruscha, F., Bieg, H. J., Kobiela, F., Korthauer, A., Krautter, W., & Marberger, C. (2020, October). The Evolution of Driver Monitoring Systems: A Shortened Story on Past, Current and Future Approaches How Cars Acquire Knowledge About the Driver's State. 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services . doi:10.1145/3406324.3425896.
[27] Massoz, Q., Langohr, T., Francois, C., & Verly, J. G. (2016). The ULG multimodality drowsiness database (called DROZY) and examples of use. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv.2016.7477715.
[28] Munla, N., Khalil, M., Shahin, A., & Mourad, A. (2015). Driver stress level detection using HRV analysis. 2015 International Conference on Advances in Biomedical Engineering, ICABME 2015, 61–64. doi:10.1109/ICABME.2015.7323251.
[29] Murugan, S., Selvaraj, J., & Sahayadhas, A. (2020). Detection and analysis: driver state with electrocardiogram (ECG). Physical and Engineering Sciences in Medicine, 43(2), 525–537. doi:10.1007/s13246-020-00853-8.
[30] Nguyen, T. T., Aoki, H., Le, A. S., Akio, H., Aoki, K., Inagami, M., & Suzuki, T. (2021). Driver State Detection Based on Cardiovascular System and Driver Reaction Information Using a Graphical Model. Journal of Transportation Technologies, 11(02), 139–156. doi:10.4236/jtts.2021.112009.
[31] Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. PACE - Pacing and Clinical Electrophysiology, 33(11), 1407–1417. doi:10.1111/j.1540-8159.2010.02841.x.
[32] Oskooei, A., Chau, S. M., Weiss, J., Sridhar, A., Martínez, M. R., & Michel, B. (2020). DeStress: Deep Learning for Unsupervised Identification of Mental Stress in Firefighters from Heart-Rate Variability (HRV) Data. Studies in Computational Intelligence, 93–105, Springer, Cham, Switzerland. doi:10.1007/978-3-030-53352-6_9.
[33] Kim, J. K., & Ahn, J. M. (2019). Digital IIR filters for heart rate variability; a comparison between Butterworth and elliptic filters. International Journal of Scientific and Technology Research, 8(12), 3509–3513.
[34] Rastgoo, M. N., Nakisa, B., Maire, F., Rakotonirainy, A., & Chandran, V. (2019). Automatic driver stress level classification using multimodal deep learning. Expert Systems with Applications, 138. doi:10.1016/j.eswa.2019.07.010.
[35] Riganello, F., Larroque, S. K., Bahri, M. A., Heine, L., Martial, C., Carrière, M., Charland-Verville, V., Aubinet, C., Vanhaudenhuyse, A., Chatelle, C., Laureys, S., & Di Perri, C. (2018). A Heartbeat Away From Consciousness: Heart Rate Variability Entropy Can Discriminate Disorders of Consciousness and Is Correlated with Resting-State fMRI Brain Connectivity of the Central Autonomic Network. Frontiers in Neurology, 9. doi:10.3389/fneur.2018.00769.
[36] Riposan-Taylor, A., & Taylor, I. J. (2018). Personal Connected Devices for Healthcare. The Internet of Things for Smart Urban Ecosystems, 333–361, Springer, Cham, Switzerland. doi:10.1007/978-3-319-96550-5_14.
[37] Schneegass, S., Pfleging, B., Broy, N., Heinrich, F., & Schmidt, A. (2013). A data set of real world driving to assess driver workload. Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. doi:10.1145/2516540.2516561.
[38] Nunes, C., Beatriz-Afonso, A., Cruz-Jesus, F., Oliveira, T., & Castelli, M. (2022). Mathematics and Mother Tongue Academic Achievement. Emerging Science Journal, 6(Special Issue), 137-149. doi:10.28991/ESJ-2022-SIED-010.
[39] Taylor, P., Griffiths, N., Bhalerao, A., Xu, Z., Gelencser, A., & Popham, T. (2017). Investigating the feasibility of vehicle telemetry data as a means of predicting driver workload. International Journal of Mobile Human Computer Interaction, 9(3), 54–72. doi:10.4018/ijmhci.2017070104.
[40] van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 368–378. doi:10.1016/j.trf.2019.09.015.
[41] Vicente, J., Laguna, P., Bartra, A., & Bailón, R. (2016). Drowsiness detection using heart rate variability. Medical and Biological Engineering and Computing, 54(6), 927–937. doi:10.1007/s11517-015-1448-7.
[42] Wagner, P., Strodthoff, N., Bousseljot, R. D., Kreiseler, D., Lunze, F. I., Samek, W., & Schaeffter, T. (2020). PTB-XL, a large publicly available electrocardiography dataset. Scientific Data, 7(1), 154. doi:10.1038/s41597-020-0495-6.
[43] Wang, K., & Guo, P. (2021). An Ensemble Classification Model with Unsupervised Representation Learning for Driving Stress Recognition Using Physiological Signals. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3303–3315. doi:10.1109/TITS.2020.2980555.
[44] Zontone, P., Affanni, A., Bernardini, R., Brisinda, D., Del Linz, L., Formaggia, F., Minen, D., Minen, M., Savorgnan, C., Piras, A., Rinaldo, R., & Fenici, R. (2020). Comparative assessment of drivers' stress induced by autonomous and manual driving with heart rate variability parameters and machine learning analysis of electrodermal activity. European Heart Journal, 41. doi:10.1093/ehjci/ehaa946.3515.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
