Applicability of Numerical Simulation by Particle Method to Unconfined Compression Tests on Geomaterials
Abstract
Doi: 10.28991/CEJ-2024-010-01-01
Full Text: PDF
Keywords
References
de Alba, P., & Ballestero, T. P. (2006). Residual strength after liquefaction: A rheological approach. Soil Dynamics and Earthquake Engineering, 26(2–4), 143–151. doi:10.1016/j.soildyn.2005.02.011.
Hamada, M., & Wakamatsu, K. (1998). A Study on Ground Displacement Caused By Soil Liquefaction. Doboku Gakkai Ronbunshu, 1998(596), 189–208. doi:10.2208/jscej.1998.596_189.
Uzuoka, R., Yashima, A., Kawakami, T., & Konrad, J. M. (1998). Fluid dynamics based prediction of liquefaction induced lateral spreading. Computers and Geotechnics, 22(3–4), 243–282. doi:10.1016/S0266-352X(98)00006-8.
Hadush, S., Yashima, A., Uzuoka, R., Moriguchi, S., & Sawada, K. (2001). Liquefaction induced lateral spread analysis using the CIP method. Computers and Geotechnics, 28(8), 549–574. doi:10.1016/S0266-352X(01)00016-7.
Hadush, S., Yashima, A., & Uzuoka, R. (2000). Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis. Computers and Geotechnics, 27(3), 199–224. doi:10.1016/S0266-352X(00)00015-X.
Yin, D., Zhang, W., Cheng, C., & Li, Y. (2012). Fractional time-dependent Bingham model for muddy clay. Journal of Non-Newtonian Fluid Mechanics, 187–188, 32–35. doi:10.1016/j.jnnfm.2012.09.003.
Chae, J., Kim, B., Park, S. wan, & Kato, S. (2010). Effect of suction on unconfined compressive strength in partly saturated soils. KSCE Journal of Civil Engineering, 14(3), 281–290. doi:10.1007/s12205-010-0281-7.
Kato, S., Yoshimura, Y., Kawai, K., & Sunden, W. (2001). Effects of Suction on Strength Characteristics of Unconfined Compression Test for a Compacted Silty Clay. Doboku Gakkai Ronbunshu, 2001(687), 201–218. doi:10.2208/jscej.2001.687_201.
Geertsema, M., Hungr, O., Schwab, J. W., & Evans, S. G. (2006). A large rockslide - Debris avalanche in cohesive soil at Pink Mountain, northeastern British Columbia, Canada. Engineering Geology, 83(1–3), 64–75. doi:10.1016/j.enggeo.2005.06.025.
Luna, B. Q., Remaître, A., van Asch, T. W. J., Malet, J. P., & van Westen, C. J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128, 63–75. doi:10.1016/j.enggeo.2011.04.007.
Marr, J. G., Elverhø, A., Harbitz, C., Imran, J., & Harff, P. (2002). Numerical simulation of mud-rich subaqueous debris flows on the glacially active margins of the Svalbard-Barents Sea. Marine Geology, 188(3–4), 351–364. doi:10.1016/S0025-3227(02)00310-9.
Montassar, S., & de Buhan, P. (2006). A numerical model to investigate the effects of propagating liquefied soils on structures. Computers and Geotechnics, 33(2), 108–120. doi:10.1016/j.compgeo.2006.02.003.
Wachs, A. (2007). Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods. Journal of Non-Newtonian Fluid Mechanics, 142(1–3), 183–198. doi:10.1016/j.jnnfm.2006.08.009.
Shakya, S., & Inazumi, S. (2023). Ground modelling by MPS-CAE simulation under different influencing parameters. Smart Geotechnics for Smart Societies, 2365–2369. doi:10.1201/9781003299127-365.
Aberqi, A., Aboussi, W., Benkhaldoun, F., Bennouna, J., & Bradji, A. (2023). Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids. Journal of Elliptic and Parabolic Equations, 9(2), 705–724. doi:10.1007/s41808-023-00221-z.
Iribe, T., Iraha, S., Tomiyama, J. and Matsubara, H., (2003). Application of particle method to flow analysis of fresh concrete. Proceedings of the Japan Concrete Institute, 25(1), 905-910.
Urano, S., Nemoto, H., & Sakihara, K. (2012). Application of flow simulation for evaluation of filling-ability of self-compacting concrete. Journal of Japan Society of Civil Engineers, Ser. E2 (Materials and Concrete Structures), 68(1), 38-48. doi:10.2208/jscejmcs.68.38.
Inazumi, S., Shakya, S., Komaki, T., & Nakanishi, Y. (2021). Numerical analysis on performance of the middle-pressure jet grouting method for ground improvement. Geosciences (Switzerland), 11(8), 313. doi:10.3390/geosciences11080313.
Shakya, S., Inazumi, S., & Nontananandh, S. (2022). Potential of Computer-Aided Engineering in the Design of Ground-Improvement Technologies. Applied Sciences (Switzerland), 12(19), 9675. doi:10.3390/app12199675.
Garrido, L., Gainza, J., & Pereira, E. (1988). Influence of sodium silicate on the rheological behaviour of clay suspensions-Application of the ternary Bingham model. Applied Clay Science, 3(4), 323–335. doi:10.1016/0169-1317(88)90023-3.
Leonardi, C. R., Owen, D. R. J., & Feng, Y. T. (2011). Numerical rheometry of bulk materials using a power law fluid and the lattice Boltzmann method. Journal of Non-Newtonian Fluid Mechanics, 166(12–13), 628–638. doi:10.1016/j.jnnfm.2011.02.011.
Aierken, A., Luo, S., Jiang, J., Chong, L., Chang, J., Zhang, R., & Zhang, X. (2022). Experimental and Numerical Studies on Flowing Properties of Grouting Mortar Based on the Modified MPS Method. Geofluids, 2022. doi:10.1155/2022/4042418.
Shakya, S., Inazumi, S., Chao, K. C., & Wong, R. K. N. (2023). Innovative Design Method of Jet Grouting Systems for Sustainable Ground Improvements. Sustainability, 15(6), 5602. doi:10.3390/su15065602.
Hossain, M. S., & Kim, W. S. (2015). Estimation of Subgrade Resilient Modulus for Fine-Grained Soil from Unconfined Compression Test. Transportation Research Record, 2473(1), 126–135. doi:10.3141/2473-15.
Güneyli, H., & Rüşen, T. (2016). Effect of length-to-diameter ratio on the unconfined compressive strength of cohesive soil specimens. Bulletin of Engineering Geology and the Environment, 75(2), 793–806. doi:10.1007/s10064-015-0835-5.
Shakya, S., & Inazumi, S. (2023). Soil Behavior Modeling By MPS-CAE Simulation. International Journal of GEOMATE, 24(102), 18–25. doi:10.21660/2023.102.g12141.
Inazumi, S., Kuwahara, S., Ogura, T., Hamada, S., & Nakao, K. (2020). Visualization and performance evaluation of existing pile pulling method with pile tip chucking by MPS-CAE. Japanese Geotechnical Journal, 15(2), 383–393. doi:10.3208/jgs.15.383.
Kondo, M., & Koshizuka, S. (2008). Suppressing the Numerical Oscillations in Moving Particle Semi-implicit method. Transactions of the Japan Society for Computational Engineering and Science, 20080015, 20080015. doi:10.11421/jsces.2008.20080015.
Koshizuka, S., & Oka, Y. (1996). Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 123(3), 421–434. doi:10.13182/NSE96-A24205.
Cummins, S. J., & Rudman, M. (1999). An SPH Projection Method. Journal of Computational Physics, 152(2), 584–607. doi:10.1006/jcph.1999.6246.
Jandaghian, M., & Shakibaeinia, A. (2020). An enhanced weakly-compressible MPS method for free-surface flows. Computer Methods in Applied Mechanics and Engineering, 360, 112771. doi:10.1016/j.cma.2019.112771.
Shakibaeinia, A., & Jin, Y. C. (2010). A weakly compressible MPS method for modeling of open-boundary free-surface flow. International Journal for Numerical Methods in Fluids, 63(10), 1208–1232. doi:10.1002/fld.2132.
Tayebi, A., & Jin, Y. chung. (2015). Development of Moving Particle Explicit (MPE) method for incompressible flows. Computers and Fluids, 117, 1–10. doi:10.1016/j.compfluid.2015.04.025.
Kodama, Y. (2008). Explicit and Implicit Methods. Computational Fluid Dynamics, 687, 416–417. doi:10.1016/b978-075068563-4.50013-6.
Hu, F., Xu, C., Li, H., Li, S., Yu, Z., Li, Y., & He, X. (2015). Particles interaction forces and their effects on soil aggregates breakdown. Soil and Tillage Research, 147, 1–9. doi:10.1016/j.still.2014.11.006.
Itori, S., Iribe, T., & Nakaza, E. (2012). An Improvement of Dirichlet Boundary Conditions in Numerical Simulations Using MPS Method. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 68(1), 17–28. doi:10.2208/kaigan.68.17.
DOI: 10.28991/CEJ-2024-010-01-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Shinya Inazumi
This work is licensed under a Creative Commons Attribution 4.0 International License.