Applicability of Numerical Simulation by Particle Method to Unconfined Compression Tests on Geomaterials

Sudip Shakya, Shinya Inazumi

Abstract


This study emphasizes the importance of accurate input parameters for ensuring the precision and reliability of simulations by conducting a sensitivity analysis to determine the calculation and material parameters. The aim is to determine the exact material parameters, for two different soil samples in a rigid state, by comparing the results of a sensitivity analysis with the unconfined compression test benchmark data for each sample. The moving particle semi-implicit (MPS) method, one of the particle methods, was chosen to reproduce the unconfined compression test simulation. The soil particles were assumed to be in the rigid state of the Bingham fluid bi-viscosity model. The first part of the study focuses on a sensitivity analysis of the basic simulation parameter values inputted during the simulation setup for the calculation procedure and the selection of the criteria for the calculation method, and then recommends the optimum values for a higher degree of accuracy based on the results. The second part of the study uses the results to analyze the sensitivity of each influencing parameter of the bi-viscosity Bingham fluid. In the final section, this study will provide a general guideline for selecting the optimum values for the MPS parameters and will recommend approximate values for other soil samples in future research with properties similar to those used in this study.

 

Doi: 10.28991/CEJ-2024-010-01-01

Full Text: PDF


Keywords


Bi-viscosity Model; Geomaterial; Particle Method, Sensitivity Analysis; Unconfined Compression Test.

References


de Alba, P., & Ballestero, T. P. (2006). Residual strength after liquefaction: A rheological approach. Soil Dynamics and Earthquake Engineering, 26(2–4), 143–151. doi:10.1016/j.soildyn.2005.02.011.

Hamada, M., & Wakamatsu, K. (1998). A Study on Ground Displacement Caused By Soil Liquefaction. Doboku Gakkai Ronbunshu, 1998(596), 189–208. doi:10.2208/jscej.1998.596_189.

Uzuoka, R., Yashima, A., Kawakami, T., & Konrad, J. M. (1998). Fluid dynamics based prediction of liquefaction induced lateral spreading. Computers and Geotechnics, 22(3–4), 243–282. doi:10.1016/S0266-352X(98)00006-8.

Hadush, S., Yashima, A., Uzuoka, R., Moriguchi, S., & Sawada, K. (2001). Liquefaction induced lateral spread analysis using the CIP method. Computers and Geotechnics, 28(8), 549–574. doi:10.1016/S0266-352X(01)00016-7.

Hadush, S., Yashima, A., & Uzuoka, R. (2000). Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis. Computers and Geotechnics, 27(3), 199–224. doi:10.1016/S0266-352X(00)00015-X.

Yin, D., Zhang, W., Cheng, C., & Li, Y. (2012). Fractional time-dependent Bingham model for muddy clay. Journal of Non-Newtonian Fluid Mechanics, 187–188, 32–35. doi:10.1016/j.jnnfm.2012.09.003.

Chae, J., Kim, B., Park, S. wan, & Kato, S. (2010). Effect of suction on unconfined compressive strength in partly saturated soils. KSCE Journal of Civil Engineering, 14(3), 281–290. doi:10.1007/s12205-010-0281-7.

Kato, S., Yoshimura, Y., Kawai, K., & Sunden, W. (2001). Effects of Suction on Strength Characteristics of Unconfined Compression Test for a Compacted Silty Clay. Doboku Gakkai Ronbunshu, 2001(687), 201–218. doi:10.2208/jscej.2001.687_201.

Geertsema, M., Hungr, O., Schwab, J. W., & Evans, S. G. (2006). A large rockslide - Debris avalanche in cohesive soil at Pink Mountain, northeastern British Columbia, Canada. Engineering Geology, 83(1–3), 64–75. doi:10.1016/j.enggeo.2005.06.025.

Luna, B. Q., Remaître, A., van Asch, T. W. J., Malet, J. P., & van Westen, C. J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128, 63–75. doi:10.1016/j.enggeo.2011.04.007.

Marr, J. G., Elverhø, A., Harbitz, C., Imran, J., & Harff, P. (2002). Numerical simulation of mud-rich subaqueous debris flows on the glacially active margins of the Svalbard-Barents Sea. Marine Geology, 188(3–4), 351–364. doi:10.1016/S0025-3227(02)00310-9.

Montassar, S., & de Buhan, P. (2006). A numerical model to investigate the effects of propagating liquefied soils on structures. Computers and Geotechnics, 33(2), 108–120. doi:10.1016/j.compgeo.2006.02.003.

Wachs, A. (2007). Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods. Journal of Non-Newtonian Fluid Mechanics, 142(1–3), 183–198. doi:10.1016/j.jnnfm.2006.08.009.

Shakya, S., & Inazumi, S. (2023). Ground modelling by MPS-CAE simulation under different influencing parameters. Smart Geotechnics for Smart Societies, 2365–2369. doi:10.1201/9781003299127-365.

Aberqi, A., Aboussi, W., Benkhaldoun, F., Bennouna, J., & Bradji, A. (2023). Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids. Journal of Elliptic and Parabolic Equations, 9(2), 705–724. doi:10.1007/s41808-023-00221-z.

Iribe, T., Iraha, S., Tomiyama, J. and Matsubara, H., (2003). Application of particle method to flow analysis of fresh concrete. Proceedings of the Japan Concrete Institute, 25(1), 905-910.

Urano, S., Nemoto, H., & Sakihara, K. (2012). Application of flow simulation for evaluation of filling-ability of self-compacting concrete. Journal of Japan Society of Civil Engineers, Ser. E2 (Materials and Concrete Structures), 68(1), 38-48. doi:10.2208/jscejmcs.68.38.

Inazumi, S., Shakya, S., Komaki, T., & Nakanishi, Y. (2021). Numerical analysis on performance of the middle-pressure jet grouting method for ground improvement. Geosciences (Switzerland), 11(8), 313. doi:10.3390/geosciences11080313.

Shakya, S., Inazumi, S., & Nontananandh, S. (2022). Potential of Computer-Aided Engineering in the Design of Ground-Improvement Technologies. Applied Sciences (Switzerland), 12(19), 9675. doi:10.3390/app12199675.

Garrido, L., Gainza, J., & Pereira, E. (1988). Influence of sodium silicate on the rheological behaviour of clay suspensions-Application of the ternary Bingham model. Applied Clay Science, 3(4), 323–335. doi:10.1016/0169-1317(88)90023-3.

Leonardi, C. R., Owen, D. R. J., & Feng, Y. T. (2011). Numerical rheometry of bulk materials using a power law fluid and the lattice Boltzmann method. Journal of Non-Newtonian Fluid Mechanics, 166(12–13), 628–638. doi:10.1016/j.jnnfm.2011.02.011.

Aierken, A., Luo, S., Jiang, J., Chong, L., Chang, J., Zhang, R., & Zhang, X. (2022). Experimental and Numerical Studies on Flowing Properties of Grouting Mortar Based on the Modified MPS Method. Geofluids, 2022. doi:10.1155/2022/4042418.

Shakya, S., Inazumi, S., Chao, K. C., & Wong, R. K. N. (2023). Innovative Design Method of Jet Grouting Systems for Sustainable Ground Improvements. Sustainability, 15(6), 5602. doi:10.3390/su15065602.

Hossain, M. S., & Kim, W. S. (2015). Estimation of Subgrade Resilient Modulus for Fine-Grained Soil from Unconfined Compression Test. Transportation Research Record, 2473(1), 126–135. doi:10.3141/2473-15.

Güneyli, H., & Rüşen, T. (2016). Effect of length-to-diameter ratio on the unconfined compressive strength of cohesive soil specimens. Bulletin of Engineering Geology and the Environment, 75(2), 793–806. doi:10.1007/s10064-015-0835-5.

Shakya, S., & Inazumi, S. (2023). Soil Behavior Modeling By MPS-CAE Simulation. International Journal of GEOMATE, 24(102), 18–25. doi:10.21660/2023.102.g12141.

Inazumi, S., Kuwahara, S., Ogura, T., Hamada, S., & Nakao, K. (2020). Visualization and performance evaluation of existing pile pulling method with pile tip chucking by MPS-CAE. Japanese Geotechnical Journal, 15(2), 383–393. doi:10.3208/jgs.15.383.

Kondo, M., & Koshizuka, S. (2008). Suppressing the Numerical Oscillations in Moving Particle Semi-implicit method. Transactions of the Japan Society for Computational Engineering and Science, 20080015, 20080015. doi:10.11421/jsces.2008.20080015.

Koshizuka, S., & Oka, Y. (1996). Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 123(3), 421–434. doi:10.13182/NSE96-A24205.

Cummins, S. J., & Rudman, M. (1999). An SPH Projection Method. Journal of Computational Physics, 152(2), 584–607. doi:10.1006/jcph.1999.6246.

Jandaghian, M., & Shakibaeinia, A. (2020). An enhanced weakly-compressible MPS method for free-surface flows. Computer Methods in Applied Mechanics and Engineering, 360, 112771. doi:10.1016/j.cma.2019.112771.

Shakibaeinia, A., & Jin, Y. C. (2010). A weakly compressible MPS method for modeling of open-boundary free-surface flow. International Journal for Numerical Methods in Fluids, 63(10), 1208–1232. doi:10.1002/fld.2132.

Tayebi, A., & Jin, Y. chung. (2015). Development of Moving Particle Explicit (MPE) method for incompressible flows. Computers and Fluids, 117, 1–10. doi:10.1016/j.compfluid.2015.04.025.

Kodama, Y. (2008). Explicit and Implicit Methods. Computational Fluid Dynamics, 687, 416–417. doi:10.1016/b978-075068563-4.50013-6.

Hu, F., Xu, C., Li, H., Li, S., Yu, Z., Li, Y., & He, X. (2015). Particles interaction forces and their effects on soil aggregates breakdown. Soil and Tillage Research, 147, 1–9. doi:10.1016/j.still.2014.11.006.

Itori, S., Iribe, T., & Nakaza, E. (2012). An Improvement of Dirichlet Boundary Conditions in Numerical Simulations Using MPS Method. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 68(1), 17–28. doi:10.2208/kaigan.68.17.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-01-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Shinya Inazumi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message