Studying the Behavior of Expansive Soil Reinforced by Micropiles
Vol. 10 No. 1 (2024): January
Research Articles
Downloads
Doi: 10.28991/CEJ-2024-010-01-017
Full Text: PDF
Al-Gharbawi, A. S. A., Najemalden, A. M., & Fattah, M. Y. (2024). Studying the Behavior of Expansive Soil Reinforced by Micropiles. Civil Engineering Journal, 10(1), 265–279. https://doi.org/10.28991/CEJ-2024-010-01-017
[1] Coduto, D. P. (2003). Foundation Design on Problematic Soils: Principles and Practices. Prentice-Hall, University of Iowa, Iowa, United States.
[2] Al-Showely, J.A. (2014). Piled Raft Foundations in Expansive Soils. MSc. Thesis, University of Technology, Baghdad, Iraq.
[3] Al-Omari, R. R. O., Fattah, M. Y., & Ali, H. A. (2016). Treatment of soil swelling using geogrid reinforced columns. Italian Journal of Geosciences, 135(1), 83–94. doi:10.3301/IJG.2014.54.
[4] Paranthaman, R., & Azam, S. (2021). Effect of composition on engineering behavior of clay tills. Geosciences (Switzerland), 11(10), 427. doi:10.3390/geosciences11100427.
[5] Das, M. (2004). Shallow Foundations - Bearing Capacity and Settlement, 4th Edition. McGraw-Hill Book Company, London, United Kingdom.
[6] ASTM D4546. (2003). Standard test methods for one-dimensional swell or settlement potential of cohesive soils. ASTM International, Pennsylvania, United States.
[7] Zada, U., Jamal, A., Iqbal, M., Eldin, S. M., Almoshaogeh, M., Bekkouche, S. R., & Almuaythir, S. (2023). Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e01985.
[8] Kumar, S., Sahu, A. K., & Naval, S. (2019). Performance of Circular Footing on Expansive Soil Bed Reinforced with Geocells of Chevron Pattern. Civil Engineering Journal, 5(11), 2333–2348. doi:10.28991/cej-2019-03091415.
[9] Al-Gharbawi, A. S. A., Al-Kaream, K. W. A., Hameedi, M. K., & Shakir, Z. H. (2023). Experimental and Theoretical Study to Evaluate the Previous Studies for Expansive Soils. Mathematical Modelling of Engineering Problems, 10(5), 1770–1776. doi:10.18280/mmep.100528.
[10] Chang, I., Im, J., Prasidhi, A. K., & Cho, G. C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65-72. doi:10.1016/j.conbuildmat.2014.10.026.
[11] Nelson, J. D., Chao, K.-C., Overton, D. D., Fox, Z. P., & Dunham-Friel, J. S. (2013). Grouted Micropiles for Foundation Remediation in Expansive Soil (8th Michael W. O'Neill Lecture). DFI Journal - The Journal of the Deep Foundations Institute, 7(1), 32–43. doi:10.1179/dfi.2013.003.
[12] Choi, C., Cho, S. D., Goo, J., Jeoung, J., Lee, K. H., & Lee, J. H. (2008). Foundation construction method of micro pile using pack used in the same. Korea Patent, (10-2008), 0034653.
[13] Choi C., Goo J.M., Lee J.H, and Cho S.D. "Development of New Micropiling Method Enhancing Frictional Resistance with Geotextile Pack.” Proceeding of ISM 9th Workshop on Micropiles, London, United Kingdom.
[14] FHWA NHI-05-039 (2005).Micro-pile Design and Construction. United States Department of Transportation. No. FHWA NHI-05-039, Federal Highway Administration, Washington, D.C., United States.
[15] Han, J., & Ye, S. L. (2006). A field study on the behavior of a foundation underpinned by micropiles. Canadian Geotechnical Journal, 43(1), 30–42. doi:10.1139/t05-087.
[16] Al Saudi, N. K. S., Al-Gharbawi, A. S. A., Rajab, N. A. A., & Tanyrbergenova, G. (2015). Sand and stone columns in soft soil at different relative densities. 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, 2121–2126. doi:10.3208/jgssp.IRQ-05.
[17] Bellato, D., D'Agostini, S., Cola, S., & Simonini, P. (2016). Behaviour of micropiles in heterogeneous coarse soils. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 169(3), 250–263. doi:10.1680/jgeen.15.00069.
[18] Lizzi, F. (1978). Reticulated Root Piles to Correct Landslides. ASCE Convention, Chicago, United States, Preprint, No. 3370, 25.
[19] Cantoni, R., Collotta, T., Ghionna, V. N., & Moretti, P. C. (1989). A design method for reticulated micropile structures in sliding slopes. Ground engineering, 22(4), 4147.
[20] Juran, I., Benslimane, A., & Bruce, D. A. (1996). Slope stabilization by micropile reinforcement. In Proceedings of the Seventh International Symposium on Landslides, Trondheim, Norway, 1715–1726.
[21] Sun, S. W., Zhu, B. Z., & Wang, J. C. (2013). Design method for stabilization of earth slopes with micropiles. Soils and Foundations, 53(4), 487–497. doi:10.1016/j.sandf.2013.06.002.
[22] Mujah, D., Hazarika, H., Watanabe, N., & Ahmad, F. (2016). Soil Arching Effect in Sand Reinforced with Micropiles Under Lateral Load. Soil Mechanics and Foundation Engineering, 53(3), 152–157. doi:10.1007/s11204-016-9379-3.
[23] Nusier, O. K., & Alawneh, A. S. (2004). Micropile technique to control upward movement of lightweight structures over expansive soils. Geotechnical and Geological Engineering, 22(1), 89–104. doi:10.1023/B:GEGE.0000013999.42592.56.
[24] Nusier, O. K., Alawneh, A. S., & Abdullatit, B. M. (2009). Small-scale micropiles to control heave on expansive clays. Proceedings of the Institution of Civil Engineers: Ground Improvement, 162(1), 27–35. doi:10.1680/grim.2009.162.1.27.
[25] Fattah, M. Y., Al – Shakarchi, Y. J., Kadhim, Y. M. (2010). Investigation on the Use of Micropiles for Substitution of Defected Piles by the Finite Element Method. Journal of Engineering, 16(3), 5300 – 5314.
[26] Borthakur, N., & Dey, A. K. (2018). Experimental Investigation on Load Carrying Capacity of Micropiles in Soft Clay. Arabian Journal for Science and Engineering, 43(4), 1969–1981. doi:10.1007/s13369-017-2894-3.
[27] Kong, G., Wen, L., Liu, H., Zheng, J., & Yang, Q. (2020). Installation effects of the post-grouted micropile in marine soft clay. Acta Geotechnica, 15(12), 3559–3569. doi:10.1007/s11440-020-00993-x.
[28] Baqir, H. H., Al-Soudany, K. Y. H., & Al-Gharbawi, A. S. A. (2020). Clay Columns Stabilized with Fly Ash in Soft Soils. IOP Conference Series: Materials Science and Engineering, 737(1). doi:10.1088/1757-899X/737/1/012095.
[29] Aswad, M. F., Al-Gharbawi, A. S. A., Fattah, M. Y., Mustfa, R. H., & Hameed, H. R. (2023). Improvement of Clayey Soil Characteristics Using Poly Acrylamide Geopolymer. Transportation Infrastructure Geotechnology. doi:10.1007/s40515-023-00340-z.
[30] Tessema, A. T., Wolelaw, N. M., Abebe, A. E., Alene, G. A., & Abeje, B. T. (2023). Utilization of Coffee Husk Ash on the Geotechnical Properties of Gypsum-Stabilized Expansive Clayey Soil. Advances in Civil Engineering, 1–13. doi:10.1155/2023/3101774.
[31] Moradi Moghaddam, H., Keramati, M., Ramesh, A., & Naderi, R. (2021). Experimental Evaluation of the Effects of Structural Parameters, Installation Methods and Soil Density on the Micropile Bearing Capacity. International Journal of Civil Engineering, 19(11), 1313–1325. doi:10.1007/s40999-021-00629-5.
[32] Neguse, D., Assefa, E., & Assefa, S. M. (2023). Study on the Performance of Expansive Subgrade Soil Stabilized with Enset Ash. Advances in Civil Engineering, 2023. doi:10.1155/2023/7851261.
[33] Cheng, H., Sui, G., Wang, G., Deng, J., Wei, H., Xu, R., He, Y., & Yang, W. (2023). Study on the Optimization of Pile Length of Micropiles in Soil Landslides. Applied Sciences (Switzerland), 13(17), 9980. doi:10.3390/app13179980.
[34] Ghrairi, F., Lavasan, A. A., & Wichtmann, T. (2022). Evaluation of the Installation Effect on the Performance of a Granular Column. Geosciences (Switzerland), 12(5). doi:10.3390/geosciences12050216.
[35] Pincus, H., Abduljauwad, S., & Al-Sulaimani, G. (1993). Determination of Swell Potential of Al-Qatif Clay. Geotechnical Testing Journal, 16(4), 469. doi:10.1520/gtj10287j.
[36] Badaradinni, B. M., Hulagabali, A. M., Solanki, C. H., & Dodagoudar, G. R. (2019). Experimental study of heave control technique for expansive soil using micropiles and geotextile layers. Lecture Notes in Civil Engineering, 14, 35–43. doi:10.1007/978-981-13-0559-7_5.
[37] Ali, M., & Ahmed, S. M. (2011). Micropile technique to control heave on expansive soils. Proceedings of Indian Geotechnical Conference, Kochi (Paper No. D311), 22–25.
[38] Hussein, S. A., & Ali, H. A. (2019). Stabilization of expansive soils using polypropylene fiber. Civil Engineering Journal, 5(3), 624-635. doi:10.28991/cej-2019-03091274.
[39] Yacine, D. M., Madani, S., & Dib, M. (2023). Effect of Polypropylene Fibers on Swelling Potential and Shear Strength of Clay. Civil Engineering Journal, 9(3), 544-555. doi:10.28991/CEJ-2023-09-03-04.
[40] Al-Gharbawi, A. S., Najemalden, A. M., & Fattah, M. Y. (2022). Expansive Soil Stabilization with Lime, Cement, and Silica Fume. Applied Sciences, 13(1), 436. doi:10.3390/app13010436.
[2] Al-Showely, J.A. (2014). Piled Raft Foundations in Expansive Soils. MSc. Thesis, University of Technology, Baghdad, Iraq.
[3] Al-Omari, R. R. O., Fattah, M. Y., & Ali, H. A. (2016). Treatment of soil swelling using geogrid reinforced columns. Italian Journal of Geosciences, 135(1), 83–94. doi:10.3301/IJG.2014.54.
[4] Paranthaman, R., & Azam, S. (2021). Effect of composition on engineering behavior of clay tills. Geosciences (Switzerland), 11(10), 427. doi:10.3390/geosciences11100427.
[5] Das, M. (2004). Shallow Foundations - Bearing Capacity and Settlement, 4th Edition. McGraw-Hill Book Company, London, United Kingdom.
[6] ASTM D4546. (2003). Standard test methods for one-dimensional swell or settlement potential of cohesive soils. ASTM International, Pennsylvania, United States.
[7] Zada, U., Jamal, A., Iqbal, M., Eldin, S. M., Almoshaogeh, M., Bekkouche, S. R., & Almuaythir, S. (2023). Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e01985.
[8] Kumar, S., Sahu, A. K., & Naval, S. (2019). Performance of Circular Footing on Expansive Soil Bed Reinforced with Geocells of Chevron Pattern. Civil Engineering Journal, 5(11), 2333–2348. doi:10.28991/cej-2019-03091415.
[9] Al-Gharbawi, A. S. A., Al-Kaream, K. W. A., Hameedi, M. K., & Shakir, Z. H. (2023). Experimental and Theoretical Study to Evaluate the Previous Studies for Expansive Soils. Mathematical Modelling of Engineering Problems, 10(5), 1770–1776. doi:10.18280/mmep.100528.
[10] Chang, I., Im, J., Prasidhi, A. K., & Cho, G. C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65-72. doi:10.1016/j.conbuildmat.2014.10.026.
[11] Nelson, J. D., Chao, K.-C., Overton, D. D., Fox, Z. P., & Dunham-Friel, J. S. (2013). Grouted Micropiles for Foundation Remediation in Expansive Soil (8th Michael W. O'Neill Lecture). DFI Journal - The Journal of the Deep Foundations Institute, 7(1), 32–43. doi:10.1179/dfi.2013.003.
[12] Choi, C., Cho, S. D., Goo, J., Jeoung, J., Lee, K. H., & Lee, J. H. (2008). Foundation construction method of micro pile using pack used in the same. Korea Patent, (10-2008), 0034653.
[13] Choi C., Goo J.M., Lee J.H, and Cho S.D. "Development of New Micropiling Method Enhancing Frictional Resistance with Geotextile Pack.” Proceeding of ISM 9th Workshop on Micropiles, London, United Kingdom.
[14] FHWA NHI-05-039 (2005).Micro-pile Design and Construction. United States Department of Transportation. No. FHWA NHI-05-039, Federal Highway Administration, Washington, D.C., United States.
[15] Han, J., & Ye, S. L. (2006). A field study on the behavior of a foundation underpinned by micropiles. Canadian Geotechnical Journal, 43(1), 30–42. doi:10.1139/t05-087.
[16] Al Saudi, N. K. S., Al-Gharbawi, A. S. A., Rajab, N. A. A., & Tanyrbergenova, G. (2015). Sand and stone columns in soft soil at different relative densities. 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, 2121–2126. doi:10.3208/jgssp.IRQ-05.
[17] Bellato, D., D'Agostini, S., Cola, S., & Simonini, P. (2016). Behaviour of micropiles in heterogeneous coarse soils. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 169(3), 250–263. doi:10.1680/jgeen.15.00069.
[18] Lizzi, F. (1978). Reticulated Root Piles to Correct Landslides. ASCE Convention, Chicago, United States, Preprint, No. 3370, 25.
[19] Cantoni, R., Collotta, T., Ghionna, V. N., & Moretti, P. C. (1989). A design method for reticulated micropile structures in sliding slopes. Ground engineering, 22(4), 4147.
[20] Juran, I., Benslimane, A., & Bruce, D. A. (1996). Slope stabilization by micropile reinforcement. In Proceedings of the Seventh International Symposium on Landslides, Trondheim, Norway, 1715–1726.
[21] Sun, S. W., Zhu, B. Z., & Wang, J. C. (2013). Design method for stabilization of earth slopes with micropiles. Soils and Foundations, 53(4), 487–497. doi:10.1016/j.sandf.2013.06.002.
[22] Mujah, D., Hazarika, H., Watanabe, N., & Ahmad, F. (2016). Soil Arching Effect in Sand Reinforced with Micropiles Under Lateral Load. Soil Mechanics and Foundation Engineering, 53(3), 152–157. doi:10.1007/s11204-016-9379-3.
[23] Nusier, O. K., & Alawneh, A. S. (2004). Micropile technique to control upward movement of lightweight structures over expansive soils. Geotechnical and Geological Engineering, 22(1), 89–104. doi:10.1023/B:GEGE.0000013999.42592.56.
[24] Nusier, O. K., Alawneh, A. S., & Abdullatit, B. M. (2009). Small-scale micropiles to control heave on expansive clays. Proceedings of the Institution of Civil Engineers: Ground Improvement, 162(1), 27–35. doi:10.1680/grim.2009.162.1.27.
[25] Fattah, M. Y., Al – Shakarchi, Y. J., Kadhim, Y. M. (2010). Investigation on the Use of Micropiles for Substitution of Defected Piles by the Finite Element Method. Journal of Engineering, 16(3), 5300 – 5314.
[26] Borthakur, N., & Dey, A. K. (2018). Experimental Investigation on Load Carrying Capacity of Micropiles in Soft Clay. Arabian Journal for Science and Engineering, 43(4), 1969–1981. doi:10.1007/s13369-017-2894-3.
[27] Kong, G., Wen, L., Liu, H., Zheng, J., & Yang, Q. (2020). Installation effects of the post-grouted micropile in marine soft clay. Acta Geotechnica, 15(12), 3559–3569. doi:10.1007/s11440-020-00993-x.
[28] Baqir, H. H., Al-Soudany, K. Y. H., & Al-Gharbawi, A. S. A. (2020). Clay Columns Stabilized with Fly Ash in Soft Soils. IOP Conference Series: Materials Science and Engineering, 737(1). doi:10.1088/1757-899X/737/1/012095.
[29] Aswad, M. F., Al-Gharbawi, A. S. A., Fattah, M. Y., Mustfa, R. H., & Hameed, H. R. (2023). Improvement of Clayey Soil Characteristics Using Poly Acrylamide Geopolymer. Transportation Infrastructure Geotechnology. doi:10.1007/s40515-023-00340-z.
[30] Tessema, A. T., Wolelaw, N. M., Abebe, A. E., Alene, G. A., & Abeje, B. T. (2023). Utilization of Coffee Husk Ash on the Geotechnical Properties of Gypsum-Stabilized Expansive Clayey Soil. Advances in Civil Engineering, 1–13. doi:10.1155/2023/3101774.
[31] Moradi Moghaddam, H., Keramati, M., Ramesh, A., & Naderi, R. (2021). Experimental Evaluation of the Effects of Structural Parameters, Installation Methods and Soil Density on the Micropile Bearing Capacity. International Journal of Civil Engineering, 19(11), 1313–1325. doi:10.1007/s40999-021-00629-5.
[32] Neguse, D., Assefa, E., & Assefa, S. M. (2023). Study on the Performance of Expansive Subgrade Soil Stabilized with Enset Ash. Advances in Civil Engineering, 2023. doi:10.1155/2023/7851261.
[33] Cheng, H., Sui, G., Wang, G., Deng, J., Wei, H., Xu, R., He, Y., & Yang, W. (2023). Study on the Optimization of Pile Length of Micropiles in Soil Landslides. Applied Sciences (Switzerland), 13(17), 9980. doi:10.3390/app13179980.
[34] Ghrairi, F., Lavasan, A. A., & Wichtmann, T. (2022). Evaluation of the Installation Effect on the Performance of a Granular Column. Geosciences (Switzerland), 12(5). doi:10.3390/geosciences12050216.
[35] Pincus, H., Abduljauwad, S., & Al-Sulaimani, G. (1993). Determination of Swell Potential of Al-Qatif Clay. Geotechnical Testing Journal, 16(4), 469. doi:10.1520/gtj10287j.
[36] Badaradinni, B. M., Hulagabali, A. M., Solanki, C. H., & Dodagoudar, G. R. (2019). Experimental study of heave control technique for expansive soil using micropiles and geotextile layers. Lecture Notes in Civil Engineering, 14, 35–43. doi:10.1007/978-981-13-0559-7_5.
[37] Ali, M., & Ahmed, S. M. (2011). Micropile technique to control heave on expansive soils. Proceedings of Indian Geotechnical Conference, Kochi (Paper No. D311), 22–25.
[38] Hussein, S. A., & Ali, H. A. (2019). Stabilization of expansive soils using polypropylene fiber. Civil Engineering Journal, 5(3), 624-635. doi:10.28991/cej-2019-03091274.
[39] Yacine, D. M., Madani, S., & Dib, M. (2023). Effect of Polypropylene Fibers on Swelling Potential and Shear Strength of Clay. Civil Engineering Journal, 9(3), 544-555. doi:10.28991/CEJ-2023-09-03-04.
[40] Al-Gharbawi, A. S., Najemalden, A. M., & Fattah, M. Y. (2022). Expansive Soil Stabilization with Lime, Cement, and Silica Fume. Applied Sciences, 13(1), 436. doi:10.3390/app13010436.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
