Ultimate Strength of Internal Ring-Reinforced KT Joints Under Brace Axial Compression
Downloads
Doi: 10.28991/CEJ-2024-010-05-012
Full Text: PDF
[2] Dehghani, A., & Aslani, F. (2019). A review on defects in steel offshore structures and developed strengthening techniques. Structures, 20, 635–657. doi:10.1016/j.istruc.2019.06.002.
[3] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Rasul, A. (2023). Rehabilitation Techniques for Offshore Tubular Joints. Journal of Marine Science and Engineering, 11(2). doi:10.3390/jmse11020461.
[4] Choo, Y. S., Liang, J. X., Van Der Vegte, G. J., & Liew, J. Y. R. (2004). Static strength of collar plate reinforced CHS X-joints loaded by in-plane bending. Journal of Constructional Steel Research, 60(12), 1745–1760. doi:10.1016/j.jcsr.2004.05.005.
[5] Nassiraei, H., Mojtahedi, A., & Lotfollahi-Yaghin, M. A. (2018). Static strength of X-joints reinforced with collar plates subjected to brace tensile loading. Ocean Engineering, 161, 227–241. doi:10.1016/j.oceaneng.2018.05.017.
[6] Shao, Y. B. (2016). Static strength of collar-plate reinforced tubular T-joints under axial loading. Steel and Composite Structures, 21(2), 323–342. doi:10.12989/scs.2016.21.2.323.
[7] Nassiraei, H., Zhu, L., Lotfollahi-Yaghin, M. A., & Ahmadi, H. (2017). Static capacity of tubular X-joints reinforced with collar plate subjected to brace compression. Thin-Walled Structures, 119(June), 256–265. doi:10.1016/j.tws.2017.06.012.
[8] Feng, R., Chen, Y., & Chen, D. (2017). Experimental and numerical investigations on collar plate and doubler plate reinforced SHS T-joints under axial compression. Thin-Walled Structures, 110, 75–87. doi:10.1016/j.tws.2016.10.017.
[9] Rajić, A., LukaÄević, I., Skejić, D., & Ungureanu, V. (2023). Cold-formed Steel-Concrete Composite Beams with Back-to-Back Channel Sections in Bending. Civil Engineering Journal, 9(10), 2345-2369. doi:10.28991/CEJ-2023-09-10-01.
[10] Choo, Y. S., Liang, J. X., Van Der Vegte, G. J., & Liew, J. Y. R. (2004). Static strength of doubler plate reinforced CHS X-joints loaded by in-plane bending. Journal of Constructional Steel Research, 60(12), 1725–1744. doi:10.1016/j.jcsr.2004.05.004.
[11] Gjukaj, A., Salihu, F., Muriqi, A., & Cvetanovski, P. (2023). Numerical Behavior of Extended End-Plate Bolted Connection under Monotonic Loading. HighTech and Innovation Journal, 4(2), 294-308. doi:10.28991/HIJ-2023-04-02-04.
[12] Gao, F., Tang, Z., Guan, X., Zhu, H., & Chen, Z. (2018). Ultimate strength of tubular T-joints reinforced with doubler plates after fire exposure. Thin-Walled Structures, 132(April), 616–628. doi:10.1016/j.tws.2018.09.021.
[13] Zavvar, E., Sadat Hosseini, A., & Lotfollahi-Yaghin, M. A. (2021). Stress concentration factors in steel tubular KT-connections with FRP-Wrapping under bending moments. Structures, 33(July), 4743–4765. doi:10.1016/j.istruc.2021.06.100.
[14] Lesani, M., Bahaari, M. R., & Shokrieh, M. M. (2014). Experimental investigation of FRP-strengthened tubular T-joints under axial compressive loads. Construction and Building Materials, 53, 243–252. doi:10.1016/j.conbuildmat.2013.11.097.
[15] Nassiraei, H., & Rezadoost, P. (2021). Stress concentration factors in tubular X-connections retrofitted with FRP under compressive load. Ocean Engineering, 229(April), 108562. doi:10.1016/j.oceaneng.2020.108562.
[16] Hosseini, A. S., Bahaari, M. R., & Lesani, M. (2020). SCF distribution in FRP-strengthened tubular T-joints under brace axial loading. Scientia Iranica, 27(3 A), 1113–1129. doi:10.24200/SCI.2018.5471.1293.
[17] Masilamani, R., & Nallayarasu, S. (2021). Experimental and numerical investigation of ultimate strength of ring-stiffened tubular T-joints under axial compression. Applied Ocean Research, 109, 102576. doi:10.1016/j.apor.2021.102576.
[18] Lee, M. M. K., & Llewelyn-Parry, A. (2005). Strength prediction for ring-stiffened DT-joints in offshore jacket structures. Engineering Structures, 27(3), 421–430. doi:10.1016/j.engstruct.2004.11.004.
[19] Lee, M. M. K., & Llewelyn-Parry, A. (1999). Strength of ring-stiffened tubular T-joints in offshore structures: A numerical parametric study. Journal of Constructional Steel Research, 51(3), 239–264. doi:10.1016/S0143-974X(99)00027-9.
[20] Lan, X., Wang, F., Ning, C., Xu, X., Pan, X., & Luo, Z. (2016). Strength of internally ring-stiffened tubular DT-joints subjected to brace axial loading. Journal of Constructional Steel Research, 125, 88–94. doi:10.1016/j.jcsr.2016.06.012.
[21] Li, Q., Zhou, X., Wang, Y., Lim, J. B. P., Wang, B., & Gao, S. (2024). Static performance of multi-planar CFST chord-CHS brace KK joints. Journal of Constructional Steel Research, 213, 108428. doi:10.1016/j.jcsr.2023.108428.
[22] Boretzki, J., Albiez, M., Myslicki, S., Vallée, T., & Ummenhofer, T. (2024). Hybrid grouted joints: Load bearing and failure behaviour under static, axial loading. Construction and Building Materials, 413, 134691. doi:10.1016/j.conbuildmat.2023.134691.
[23] Lin, G., Zeng, J., Li, J., & Chen, G. M. (2024). Chord axial compressive behavior of hybrid FRP-concrete-steel double-skin tubular member T-joints. Thin-Walled Structures, 196, 111535. doi:10.1016/j.tws.2023.111535.
[24] Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2013). Experimental and numerical investigation of geometric SCFs in internally ring-stiffened tubular KT-joints of offshore structures. Journal of the Persian Gulf, 4(12), 1-12.
[25] Wimpey Offshore. (1991). In-service database for ring-stiffened tubular joints. Report WOL, 35, 91, London, United Kingdom.
[26] Azari Dodaran, N., Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2018). Static strength of axially loaded tubular KT-joints at elevated temperatures: Study of geometrical effects and parametric formulation. Marine Structures, 61(June), 282–308. doi:10.1016/j.marstruc.2018.06.009.
[27] Sadat Hosseini, A., Zavvar, E., & Ahmadi, H. (2021). Stress concentration factors in FRP-strengthened steel tubular KT-joints. Applied Ocean Research, 108(September), 102525. doi:10.1016/j.apor.2021.102525.
[28] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Rasul, A. (2023). Numerical investigation of crack mitigation in tubular KT-joints using composite reinforcement. Engineering Proceedings, 56(1), 255. doi:10.3390/ASEC2023-16290.
[29] Ahmadi, H., Lotfollahi-Yaghin, M. A., & Yong-Bo, S. (2013). Chord-side SCF distribution of central brace in internally ring-stiffened tubular KT-joints: A geometrically parametric study. Thin-Walled Structures, 70, 93–105. doi:10.1016/j.tws.2013.04.011.
[30] Ahmadi, H., Ali Lotfollahi-Yaghin, M., Yong-Bo, S., & Aminfar, M. H. (2012). Parametric study and formulation of outer-brace geometric stress concentration factors in internally ring-stiffened tubular KT-joints of offshore structures. Applied Ocean Research, 38, 74–91. doi:10.1016/j.apor.2012.07.004.
[31] Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2015). Stress concentration due to in-plane bending (IPB) loads in ring-stiffened tubular KT-joints of offshore structures: Parametric study and design formulation. Applied Ocean Research, 51, 54–66. doi:10.1016/j.apor.2015.02.009.
[32] Ahmadi, H., & Zavvar, E. (2015). Stress concentration factors induced by out-of-plane bending loads in ring-stiffened tubular KT-joints of jacket structures. Thin-Walled Structures, 91, 82–95. doi:10.1016/j.tws.2015.02.011.
[33] Kohnke, P. (2009). Theory reference for the mechanical APDL and mechanical applications. Ansys Inc, Pennsylvania, United States.
[34] Marshall, P. W. (2013). Design of welded tubular connections: Basis and use of AWS code provisions. Elsevier, Amsterdam, Netherlands.
[35] Zavvar, E., Hectors, K., & De Waele, W. (2021). Stress concentration factors of multi-planar tubular KT-joints subjected to in-plane bending moments. Marine Structures, 78. doi:10.1016/j.marstruc.2021.103000.
[36] Iskander, M. S., Shaat, A. A., Sayed-Ahmed, E. Y., & Soliman, E. A. (2017). Strengthening CHS T-joints subjected to brace axial compression using through-bolts. Journal of Constructional Steel Research, 128, 555–566. doi:10.1016/j.jcsr.2016.09.019.
[37] Wardenier, J., Kurobane, Y., Packer, J. A., Van der Vegte, G. J., & Zhao, X. L. (2008). Design guide for circular hollow section (CHS) joints under predominantly static loading. Cidect, Geneva, Switzerland.
[38] Swensson, K. D., & Yura, J. A. (1986). Stress Concentration Factors in Double-Tee Tubular Joints. PMFSEL Report No.
[39] Li, X., Zhang, L., Xue, X., Wang, X., & Wang, H. (2018). Prediction on ultimate strength of tube-gusset KT-joints stiffened by 1/4 ring plates through experimental and numerical study. Thin-Walled Structures, 123, 409–419. doi:10.1016/j.tws.2017.11.029.
[40] Qu, H., Li, A., Huo, J., & Liu, Y. (2017). Dynamic performance of collar plate reinforced tubular T-joint with precompression chord. Engineering Structures, 141, 555-570. doi:10.1016/j.engstruct.2017.03.037.
[41] Ahmadi, H., Yeganeh, A., Mohammadi, A. H., & Zavvar, E. (2016). Probabilistic analysis of stress concentration factors in tubular KT-joints reinforced with internal ring stiffeners under in-plane bending loads. Thin-Walled Structures, 99, 58–75. doi:10.1016/j.tws.2015.11.010.
[42] Efthymiou, M. (1988). Development of SCF formulae and generalized influence functions for use in fatigue analysis. OTJ 88. Recent Developments in Tubular Joints Technology, Surrey, United Kingdom.
[43] Khan, M. B., Iqbal Khan, M., Shafiq, N., Abbas, Y. M., Imran, M., Fares, G., & Khatib, J. M. (2023). Enhancing the mechanical and environmental performance of engineered cementitious composite with metakaolin, silica fume, and graphene nanoplatelets. Construction and Building Materials, 404(March), 133187. doi:10.1016/j.conbuildmat.2023.133187.
[44] Nassiraei, H. (2020). Local joint flexibility of CHS T/Y-connections strengthened with collar plate under in-plane bending load: parametric study of geometrical effects and design formulation. Ocean Engineering, 202, 107054. doi:10.1016/j.oceaneng.2020.107054.
[45] Karim, M. A., Abdullah, M. Z., Waqar, A., Deifalla, A. F., Ragab, A. E., & Khan, M. (2023). Analysis of the mechanical properties of the single layered braid reinforced thermoplastic pipe (BRTP) for oil & gas industries. Results in Engineering, 20, 101483. doi:10.1016/j.rineng.2023.101483.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
