Refining Low Strain Pile Integrity Testing for Minor Flaw Detection with Complex Wavelet Transform
Abstract
Doi: 10.28991/CEJ-2024-010-10-05
Full Text: PDF
Keywords
References
Fleming, K., Weltman, A., Randolph, M., & Elson, K. (2008). Piling Engineering. CRC Press, Boca Raton, United States. doi:10.1201/b22272.
Shammazov, I. A., Batyrov, A. M., Sidorkin, D. I., & Van Nguyen, T. (2023). Study of the Effect of Cutting Frozen Soils on the Supports of Above-Ground Trunk Pipelines. Applied Sciences (Switzerland), 13(5), 3139. doi:10.3390/app13053139.
Lavrik, A., Buslaev, G., & Dvoinikov, M. (2023). Thermal Stabilization of Permafrost Using Thermal Coils inside Foundation Piles. Civil Engineering Journal (Iran), 9(4), 927–938. doi:10.28991/CEJ-2023-09-04-013.
Syas’ko, V., & Shikhov, A. (2022). Assessing the State of Structural Foundations in Permafrost Regions by Means of Acoustic Testing. Applied Sciences (Switzerland), 12(5), 2364. doi:10.3390/app12052364.
Blinov, P. A., Shansherov, A. V., Cheremshantsev, D. M., Kuznetsova, N. Y., & Nikishin, V. V. (2022). Analysis and Selection of a Grouting Mixture, Resistant to Dynamic Loads, in Order to Improve the Support Tightness Quality in the Annulus. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 333(11), 115–123. doi:10.18799/24131830/2022/11/3726.
Dvoynikov, M. V., Nikitin, V. I., & Kopteva, A. I. (2024). Analysis of Methodology for Selecting Rheological Model of Cement Slurry for Determining Technological Parameters of Well Casing. International Journal of Engineering, Transactions B: Applications, 37(10), 2042–2050. doi:10.5829/ije.2024.37.10a.15.
Petrakov, D. G., Loseva, A. V., Jafarpour, H., & Penkov, G. M. (2024). Experimental Evaluation of Effective Chemical Composition on Reservoir Quality of Bottomhole Zone of Low Permeability Terrigenous Reservoirs. International Journal of Engineering, Transactions B: Applications, 37(8), 1547–1555. doi:10.5829/IJE.2024.37.08B.08.
Kuzmin, A. M., Buslaev, G. V., Morenov, V. A., Tseneva, S. N., & Gavrilov, N. (2022). Improving the energy-efficiency of small-scale methanol production through the use of microturboexpander units. Journal of Mining Institute, 258, 1038–1049. doi:10.31897/PMI.2022.104.
Amir, J. M. (2017). Pile integrity testing: history, present situation and future agenda. The 3rd International Conference on Deep Foundations, 27-29 April, Santa Cruz de la Sierra, Bolivia.
Gao, T. (2022). A Critical Analysis of Existing Intelligent Analytical Techniques for Pile Integrity Test. 2022 8th International Conference on Hydraulic and Civil Engineering: Deep Space Intelligent Development and Utilization Forum (ICHCE), 740–751. doi:10.1109/ichce57331.2022.10042772.
Amir, J. M. (2020). Pile integrity testing: all about the methods of pile NDT (2nd Ed.). Piletest.com, Hemel Hempstead, United Kingdom.
ASTM D582-16. (2016). Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations. ASTM International, Pennsylvania, United States. doi:10.1520/d5882-16.
Sarhan, H. A., O’Neill, M. W., & Tabsh, S. W. (2004). Structural capacity reduction for drilled shafts with minor flaws. Structural Journal, 101(3), 291-297. doi:10.14359/13088.
Iskander, M., Roy, D., Kelley, S., & Ealy, C. (2003). Drilled Shaft Defects: Detection, and Effects on Capacity in Varved Clay. Journal of Geotechnical and Geoenvironmental Engineering, 129(12), 1128–1137. doi:10.1061/(asce)1090-0241(2003)129:12(1128).
Debnath, L., & Bhatta, D. (2014). Integral Transforms and Their Applications. Chapman and Hall/CRC, New York, United States. doi:10.1201/b17670.
Debnath, L., & Shah, F. A. (2015). Brief Historical Introduction. Wavelet Transforms and Their Applications. Birkhäuser, Boston, United States. doi:10.1007/978-0-8176-8418-1_1.
Sejdić, E., Djurović, I., & Jiang, J. (2009). Time–frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19(1), 153–183. doi:10.1016/j.dsp.2007.12.004.
Grossmann, A., & Morlet, J. (2009). Decomposmon of hardy functions into square integrable wavelets of constant shape. Fundamental Papers in Wavelet Theory, 15(4), 126–139. doi:10.1515/9781400827268.126.
Ali, A., Sheng-Chang, C., & Shah, M. (2020). Continuous wavelet transformation of seismic data for feature extraction. SN Applied Sciences, 2(11), 1-12. doi:10.1007/s42452-020-03618-w.
Palupi, I. R. (2018, April). Depth prediction of gravity data by using continous wavelet transform. EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering, European Association of Geoscientists & Engineers, 1-4.
Deleersnyder, W., Hermans, T., & Dudal, D. (2024). An efficient workflow for airborne electromagnetic data processing for advanced applications. Copernicus Meetings: No. EGU24-16111. doi:10.5194/egusphere-egu24-16111.
Chatterjee, P. (2018). Wavelet Analysis in Civil Engineering. CRC Press, London, United Kingdom. doi:10.1201/b18057.
Saadatmorad, M., Khatir, S., Cuong-Le, T., Benaissa, B., & Mahmoudi, S. (2024). Detecting damages in metallic beam structures using a novel wavelet selection criterion. Journal of Sound and Vibration, 578, 118297. doi:10.1016/j.jsv.2024.118297.
Thoriya, A., Vora, T., Jadeja, R., Ali Abdelrahman Ali, Y., & Patel, S. K. (2024). Application of wavelet transform techniques for corrosion assessment of embedded rebars in RC elements using electromechanical impedance. Measurement: Journal of the International Measurement Confederation, 226, 114081. doi:10.1016/j.measurement.2023.114081.
Addison, P. S., & Watson, J. N. (1997). Wavelet analysis for low strain integrity testing of foundation piles. 5th International conference on inspection, appraisal, repairs, maintenance of buildings and structures, 15-16 May, 1997, Singapore.
Watson, J. N., Addison, P. S., & Sibbald, A. (1999). De-noising of sonic echo test data through wavelet transform reconstruction. Shock and Vibration, 6(5), 267–272. doi:10.1155/1999/175750.
Wang, J. (2003). Wavelet analyses for stress wave detection of piles. Science in China Series E, 46(2), 113. doi:10.1360/03ye9011.
Ni, S. H., Isenhower, W. M., & Huang, Y. H. (2012). Continuous wavelet transform technique for low-strain integrity testing of deep drilled shafts. Journal of GeoEngineering, 7(3), 97–105. doi:10.6310/jog.2012.7(3).3.
Ni, S. H., Yang, Y. Z., Tsai, P. H., & Chou, W. H. (2017). Evaluation of pile defects using complex continuous wavelet transform analysis. NDT and E International, 87, 50–59. doi:10.1016/j.ndteint.2017.01.007.
Ni, S. H., Yanga, Y. Z., & Lyu, C. R. (2017). Application of wavelet transform for the impulse response of pile. Smart Structures and Systems, 19(5), 513–521. doi:10.12989/sss.2017.19.5.513.
Ni, S. H., Li, J. L., Yang, Y. Z., & Lai, Y. Y. (2019). Applicability of complex wavelet transform to evaluate the integrity of commonly used pile types. Journal of GeoEngineering, 14(1), 21–30. doi:10.6310/jog.201903_14(1).3.
Zheng, W., Zheng, W., Wang, S., Lin, C., Yu, X., & Liu, J. (2020). Damage Localization of Piles Based on Complex Continuous Wavelet Transform: Numerical Example and Experimental Verification. Shock and Vibration, 2020, 1–9. doi:10.1155/2020/8058640.
Liu, J. L., Lin, C. X., Ye, X. J., Zheng, W. T., & Luo, Y. P. (2021). An improved algorithm for pile damage localization based on complex continuous wavelet transform. Smart Structures and Systems, 27(3), 493–506. doi:10.12989/sss.2021.27.3.493.
Churkin, A. A., Ulybin, A. V., & Kapustin, V. V. (2021). Application of low strain impact testing to spliced driven piles quality control. Stroitel'stvo Unikal'nyh Zdanij i Sooruzenij, (3), 1-14.
Loseva, E., Lozovsky, I., Zhostkov, R., & Syasko, V. (2022). Wavelet Analysis for Evaluating the Length of Precast Spliced Piles Using Low Strain Integrity Testing. Applied Sciences (Switzerland), 12(21), 10901. doi:10.3390/app122110901.
Ponomaryov, A. B., Zakharov, A. V., Tatyannikov, D. A., & Shalamova, E. A. (2023). Geotechnical Monitoring in the Urban Construction Environment. Soil Mechanics and Foundation Engineering, 60(5), 452–458. doi:10.1007/s11204-023-09914-y.
Zakharov, A. V., Ponomaryov, A. B., & Ofrikhter, I. V. (2022). Model of soil thermal conductivity in the form of a truncated sphere. Magazine of Civil Engineering, 114(6), 11403. doi:10.34910/MCE.114.3.
Loseva, E., Lozovsky, I., & Zhostkov, R. (2022). Identifying Small Defects in Cast-in-Place Piles Using Low Strain Integrity Testing. Indian Geotechnical Journal, 52(2), 270–279. doi:10.1007/s40098-021-00583-y.
Vinogradova, A., Gogolinskii, K., Umanskii, A., Alekhnovich, V., Tarasova, A., & Melnikova, A. (2022). Method of the Mechanical Properties Evaluation of Polyethylene Gas Pipelines with Portable Hardness Testers. Inventions, 7(4), 125. doi:10.3390/inventions7040125.
Schipachev, A. M., & Aljadly, M. (2023). Magnetic-Pulsed Treatment to Improve the Strength Properties of Defective Sections of Oil and Gas Pipelines. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 334(5), 7–16. doi:10.18799/24131830/2023/5/4011.
Alekhnovich, V., Syasko, V., & Umanskii, A. (2024). Multi-Parameter Complex Control of Metal Coatings on Ball Plugs of Pipeline Shut-Off Valves. Inventions, 9(4), 78. doi:10.3390/inventions9040078.
Chai, H.-Y., & Phoon, K.-K. (2013). Detection of Shallow Anomalies in Pile Integrity Testing. International Journal of Geomechanics, 13(5), 672–677. doi:10.1061/(asce)gm.1943-5622.0000233.
Zhostkov, R.A. (2019). A Software for Simulation of Low Integrity Testing for Cast-in-Place Piles. Patent RF. 2019.665449.
Lozovsky, I. N., Zhostkov, R. A., & Churkin, A. A. (2020). Numerical Simulation of Ultrasonic Pile Integrity Testing. Russian Journal of Nondestructive Testing, 56(1), 1–11. doi:10.1134/S1061830920010064.
Warburton, G. B. (1995). Dynamics of structures, by Ray W. Clough and Joseph Penzien, 2nd edition, McGraw-Hill, New York, United Sttaes. Earthquake Engineering & Structural Dynamics, 24(3), 457–462. doi:10.1002/eqe.4290240311.
Stojić, D., Nestorović, T., Marković, N., & Marjanović, M. (2018). Experimental and numerical research on damage localization in plate-like concrete structures using hybrid approach. Structural Control and Health Monitoring, 25(9), 2214. doi:10.1002/stc.2214.
Lide, D. R. (2004). CRC handbook of chemistry and physics. CRC Press, London, United Kingdom.
Briaud, J. L. (2023). Geotechnical engineering: unsaturated and saturated soils. John Wiley & Sons, Hoboken, United States.
Vasilyeva, N. V., Boikov, A. V., Erokhina, O. O., & Trifonov, A. Y. (2021). Automated digitization of radial charts. Journal of Mining Institute, 247(1), 82–87. doi:10.31897/PMI.2021.1.9.
Belyakov, N., Smirnova, O., Alekseev, A., & Tan, H. (2021). Numerical simulation of the mechanical behavior of fiber-reinforced cement composites subjected dynamic loading. Applied Sciences (Switzerland), 11(3), 1–15. doi:10.3390/app11031112.
Basalaeva, P. B., & Kuranov, A. D. (2024). Influence of dip angle of lithologically non-uniform interburden on horizontal mine opening stability during driving. Mining Informational and Analytical Bulletin, (3), 17–30. doi:10.25018/0236_1493_2024_3_0_17.
Liu, X., Hesham EI Naggar, M., Wang, K., & Wu, W. (2020). Theoretical analysis of three-dimensional effect in pile integrity test. Computers and Geotechnics, 127, 103765. doi:10.1016/j.compgeo.2020.103765.
DOI: 10.28991/CEJ-2024-010-10-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Elizaveta Loseva, Ilya Lozovsky, Ruslan Zhostkov
This work is licensed under a Creative Commons Attribution 4.0 International License.