Effect of Porous Rectangular Type Baffle Block Angle on Hydraulic Jump Downstream of Spillway
Abstract
Doi: 10.28991/CEJ-2024-010-10-04
Full Text: PDF
Keywords
References
Mohammed, H. J., & Al-Shukur, A. H. K. (2022). Investigating Energy Dissipation for Different Inclined Spillways and Baffles Blocks. Journal of University of Babylon for Engineering Sciences, 30(3), 74-95.
Azha, S. F., Sidek, L. M., Kok, K., Ahmad, S. A., Saman, D. H., Omar, S. M. A., ... & Ahmed, A. N. (2023). Assessing dam spillway discharge capacity in response to extreme floods in Perak river hydroelectric scheme: simulation and proposed mitigation measures. Ain Shams engineering journal, 14(11), 102540. doi:10.1016/j.asej.2023.102540.
Dashtban, H., Kabiri-Samani, A., Fazeli, M., & Rezashahreza, M. (2024). Hydraulic jump in a circular stilling basin by using angled baffle blocks. Flow Measurement and Instrumentation, 96. doi:10.1016/j.flowmeasinst.2024.102562.
Habibzadeh, A., Loewen, M. R., & Rajaratnam, N. (2012). Performance of Baffle Blocks in Submerged Hydraulic Jumps. Journal of Hydraulic Engineering, 138(10), 902–908. doi:10.1061/(asce)hy.1943-7900.0000587.
Keihanpour, M., & Kabiri-Samani, A. (2021). Effects of modern marguerite-shaped inlets on hydraulic characteristics of swirling flow in shaft spillways. Water Science and Engineering, 14(3), 246–256. doi:10.1016/j.wse.2021.08.005.
El-Mahdy, M. E. S. (2021). Experimental method to predict scour characteristics downstream of stepped spillway equipped with V-Notch end sill. Alexandria Engineering Journal, 60(5), 4337–4346. doi:10.1016/j.aej.2021.03.018.
Peterka, A. J. (1964). Hydraulic design of stilling basins and energy dissipators (No. 25). United States Department of the Interior, Bureau of Reclamation, Denver, United States.
Chow, V.T. (1959) Open Channel Hydraulics. McGraw-Hill, New York, United States.
Rajaratnam, N. (1976). Turbulent Jets. Elsevier, Amsterdam, Netherlands.
Rouse, H., Siao, T. T., & Nagaratnam, S. (1958). Turbulence Characteristics of the Hydraulic Jump. Journal of the Hydraulics Division, 84(1), 1–30. doi:10.1061/jyceaj.0000161.
Dey, S., & Sarkar, A. (2008). Characteristics of Turbulent Flow in Submerged Jumps on Rough Beds. Journal of Engineering Mechanics, 134(1), 49–59. doi:10.1061/(asce)0733-9399(2008)134:1(49).
Basco, D. R., & Adams, J. R. (1971). Drag Forces on Baffle Blocks in Hydraulic Jumps. Journal of the Hydraulics Division, 97(12), 2023–2035. doi:10.1061/jyceaj.0003166.
Sayadzadeh, F., Musavi-Jahromi, S. H., Sedghi, H., & Khosrojerdi, A. (2020). Pyramidal vortex breakers influences on the flow discharge of morning glory spillway. Ain Shams Engineering Journal, 11(2), 455–463. doi:10.1016/j.asej.2019.08.013.
Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932.
Bakri, B., Pallu, S., Lopa, R., Akbar, M., Ihsan, M., & Arai, Y. (2017). Flow velocity distribution analysis on free intake structure and its influence to intake capacity. International conference on engineering and technology development (ICETD), 25-26 October, 2017, Bandar Lampung University, Lampung, Indonesia.
Sunik, S. (2024). Height, width and location ratio of square Baffle block in front of sluice gate. Water and Energy International, 66(11), 21-27.
Heidarzadeh, M., & Feizi, S. (2022). A cascading risk model for the failure of the concrete spillway of the Toddbrook dam, England during the August 2019 flooding. International Journal of Disaster Risk Reduction, 80, 103214. doi:10.1016/j.ijdrr.2022.103214.
Ozbay, O. (2009). An investigation of energy dissipation ratios of different type energy dissipator blocks in chute channels. MSc Thesis, Firat University, Elazıg.
Hager, W.H. (1992). Baffle Blocks. In: Energy Dissipators and Hydraulic Jump. Water Science and Technology Library, Vol 8. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-015-8048-9_8.
Onitsuka, K., Akiyama, J., Shigeda, M., & Nakagawa, T. (2006). Effect of Arrangement of Cylinder Type Baffle Block on Drag Force At Downstream of Steep Channel. Proceedings of Hydraulic Engineering, 50, 877–882. doi:10.2208/prohe.50.877.
Nettleton, P. C., & McCorquodale, J. A. (1989). Radial flow stilling basins with baffle blocks. Canadian Journal of Civil Engineering, 16(4), 489–497. doi:10.1139/l89-079.
Eshkou, Z., Dehghani, A. A., & Ahmadi, A. (2018). Forced Hydraulic Jump in a Diverging Stilling Basin Using Angled Baffle Blocks. Journal of Irrigation and Drainage Engineering, 144(8), 6018004. doi:10.1061/(asce)ir.1943-4774.0001328.
Ranga Raju, K. G., Kitaal, M. K., Verma, M. S., & Ganeshan, V. R. (1980). Analysis of Flow over Baffle Blocks and End Sills. Journal of Hydraulic Research, 18(3), 227–241. doi:10.1080/00221688009499549.
Zaffar, M. W., Hassan, I., Ali, Z., Sarwar, K., Hassan, M., Mustafa, M. T., & Waris, F. A. (2023). Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater. AQUA — Water Infrastructure, Ecosystems and Society, 72(11), 2081–2108. doi:10.2166/aqua.2023.261.
Abela, C. M. (2013). Stainless Steel Armor Plate Design for Protecting Supercavitating Baffle Blocks against Debris Impacts in High-Velocity Stilling Basins. Practice Periodical on Structural Design and Construction, 18(3), 177–186. doi:10.1061/(asce)sc.1943-5576.0000153.
Steele, R. B. (1926). Variation in the Latin Dactylic Hexameter. Philological Quarterly, 5, 212.
Steele, I. C., & Monroe, R. A. (1929). Baffle-pier experiments on models of Pit River Dams. Transactions of the American Society of Civil Engineers, 93(1), 451-480. doi:10.1061/TACEAT.0004087.
Ehrenberger, R. (1930). A new velocity formula for artificial channels with strong inclinations (shot channels) and calculation of the self-aeration of the water. Hydrographic Central Office in the Federal Ministry of Agriculture and Forestry, Wasserwirtschaft 23(17): 297–304.
Stevens, J.C. (1937): Scour Prevention below Bonneville Dam. Engineering News-Record, 118, 61–65.
Zhou, Q., & Yin, C. (2011). The baffle block effect of fluctuating pressure in hydraulic jump with low Froude number. 2011 International Conference on Multimedia Technology, 1290–1293. doi:10.1109/icmt.2011.6003131.
Djunur, L. H. (2023). Hydraulic planning of spillway structures. Unismuh Pers Makassar, Makassar. Indonesia. (In Indonesian).
Pandey, R., Kumar, M., & Saini, J. S. (2023). Thermodynamic performance evaluation of an indoor designed solar air heater duct equipped with V-down baffle blocks having racetrack-shaped staggered openings of varying aspect ratio–an experimental study. International Journal of Green Energy, 20(6), 656-676. doi:10.1080/15435075.2022.2083916.
Alwan, I., & Azzubaidi, R. (2022). Control of Velocity Profiles by using Baffle Blocks in Open Canals. Journal of Water Resources and Geosciences, 1(1), 86-101.
Abbas, A., Alwash, H., & Mahmood, A. (2018). Effect of baffle block configurations on characteristics of hydraulic jump in adverse stilling basins. MATEC Web of Conferences, 162, 3005. doi:10.1051/matecconf/201816203005.
Abdelhaleem, F. S. F. (2013). Effect of semi-circular baffle blocks on local scour downstream clear-overfall weirs. Ain Shams Engineering Journal, 4(4), 675–684. doi:10.1016/j.asej.2013.03.003.
DOI: 10.28991/CEJ-2024-010-10-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Lutfi Hair Djunur, Muhammad Saleh Pallu, Riswal Karamma, Bambang Bakri
This work is licensed under a Creative Commons Attribution 4.0 International License.