Effect of Porous Rectangular Type Baffle Block Angle on Hydraulic Jump Downstream of Spillway

Lutfi Hair Djunur, Muhammad S. Pallu, Riswal Karamma, Bambang Bakri

Abstract


The elevation of the water surface upstream of the spillway structure increases significantly due to damming, leading to a rapid, supercritical flow downstream. This flow transitions from supercritical to subcritical, resulting in hydraulic jumps (Lj). The placement of a porous rectangular baffle block in the chute acts as an energy dissipator within the channel. This study aimed to investigate the effect of the angle of the porous rectangular baffle block on energy dissipation and hydraulic jumps downstream of the spillway structure. The experiment utilized a two-dimensional (2D) approach to evaluate energy dissipation and hydraulic jumps under various placements of the porous rectangular baffle block in the chute. The results indicated that the water level above the weir (hd) increased, along with turbulence downstream, while energy loss decreased. However, the efficiency of energy dissipation improved as variations in the water level above the weir decreased. A baffle block with an angle (α) of 60° was found to be the most effective in dissipating flow energy and shortening hydraulic jumps. Additionally, an empirical equation was developed for the hydraulic jump length as a function of the downstream Froude number (Fr): Lj=yt (k α hd(Fr-1)^4). The porous rectangular baffle block proved advantageous as it gradually dissipates flow velocity through its pore openings, preventing flow momentum reversal.

 

Doi: 10.28991/CEJ-2024-010-10-04

Full Text: PDF


Keywords


Spillway; Baffle Block; Flow Energy; Hydraulic Jumps.

References


Mohammed, H. J., & Al-Shukur, A. H. K. (2022). Investigating Energy Dissipation for Different Inclined Spillways and‎ Baffles Blocks. Journal of University of Babylon for Engineering Sciences, 30(3), 74-95.

Azha, S. F., Sidek, L. M., Kok, K., Ahmad, S. A., Saman, D. H., Omar, S. M. A., ... & Ahmed, A. N. (2023). Assessing dam spillway discharge capacity in response to extreme floods in Perak river hydroelectric scheme: simulation and proposed mitigation measures. Ain Shams engineering journal, 14(11), 102540. doi:10.1016/j.asej.2023.102540.

Dashtban, H., Kabiri-Samani, A., Fazeli, M., & Rezashahreza, M. (2024). Hydraulic jump in a circular stilling basin by using angled baffle blocks. Flow Measurement and Instrumentation, 96. doi:10.1016/j.flowmeasinst.2024.102562.

Habibzadeh, A., Loewen, M. R., & Rajaratnam, N. (2012). Performance of Baffle Blocks in Submerged Hydraulic Jumps. Journal of Hydraulic Engineering, 138(10), 902–908. doi:10.1061/(asce)hy.1943-7900.0000587.

Keihanpour, M., & Kabiri-Samani, A. (2021). Effects of modern marguerite-shaped inlets on hydraulic characteristics of swirling flow in shaft spillways. Water Science and Engineering, 14(3), 246–256. doi:10.1016/j.wse.2021.08.005.

El-Mahdy, M. E. S. (2021). Experimental method to predict scour characteristics downstream of stepped spillway equipped with V-Notch end sill. Alexandria Engineering Journal, 60(5), 4337–4346. doi:10.1016/j.aej.2021.03.018.

Peterka, A. J. (1964). Hydraulic design of stilling basins and energy dissipators (No. 25). United States Department of the Interior, Bureau of Reclamation, Denver, United States.

Chow, V.T. (1959) Open Channel Hydraulics. McGraw-Hill, New York, United States.

Rajaratnam, N. (1976). Turbulent Jets. Elsevier, Amsterdam, Netherlands.

Rouse, H., Siao, T. T., & Nagaratnam, S. (1958). Turbulence Characteristics of the Hydraulic Jump. Journal of the Hydraulics Division, 84(1), 1–30. doi:10.1061/jyceaj.0000161.

Dey, S., & Sarkar, A. (2008). Characteristics of Turbulent Flow in Submerged Jumps on Rough Beds. Journal of Engineering Mechanics, 134(1), 49–59. doi:10.1061/(asce)0733-9399(2008)134:1(49).

Basco, D. R., & Adams, J. R. (1971). Drag Forces on Baffle Blocks in Hydraulic Jumps. Journal of the Hydraulics Division, 97(12), 2023–2035. doi:10.1061/jyceaj.0003166.

Sayadzadeh, F., Musavi-Jahromi, S. H., Sedghi, H., & Khosrojerdi, A. (2020). Pyramidal vortex breakers influences on the flow discharge of morning glory spillway. Ain Shams Engineering Journal, 11(2), 455–463. doi:10.1016/j.asej.2019.08.013.

Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932.

Bakri, B., Pallu, S., Lopa, R., Akbar, M., Ihsan, M., & Arai, Y. (2017). Flow velocity distribution analysis on free intake structure and its influence to intake capacity. International conference on engineering and technology development (ICETD), 25-26 October, 2017, Bandar Lampung University, Lampung, Indonesia.

Sunik, S. (2024). Height, width and location ratio of square Baffle block in front of sluice gate. Water and Energy International, 66(11), 21-27.

Heidarzadeh, M., & Feizi, S. (2022). A cascading risk model for the failure of the concrete spillway of the Toddbrook dam, England during the August 2019 flooding. International Journal of Disaster Risk Reduction, 80, 103214. doi:10.1016/j.ijdrr.2022.103214.

Ozbay, O. (2009). An investigation of energy dissipation ratios of different type energy dissipator blocks in chute channels. MSc Thesis, Firat University, Elazıg.

Hager, W.H. (1992). Baffle Blocks. In: Energy Dissipators and Hydraulic Jump. Water Science and Technology Library, Vol 8. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-015-8048-9_8.

Onitsuka, K., Akiyama, J., Shigeda, M., & Nakagawa, T. (2006). Effect of Arrangement of Cylinder Type Baffle Block on Drag Force At Downstream of Steep Channel. Proceedings of Hydraulic Engineering, 50, 877–882. doi:10.2208/prohe.50.877.

Nettleton, P. C., & McCorquodale, J. A. (1989). Radial flow stilling basins with baffle blocks. Canadian Journal of Civil Engineering, 16(4), 489–497. doi:10.1139/l89-079.

Eshkou, Z., Dehghani, A. A., & Ahmadi, A. (2018). Forced Hydraulic Jump in a Diverging Stilling Basin Using Angled Baffle Blocks. Journal of Irrigation and Drainage Engineering, 144(8), 6018004. doi:10.1061/(asce)ir.1943-4774.0001328.

Ranga Raju, K. G., Kitaal, M. K., Verma, M. S., & Ganeshan, V. R. (1980). Analysis of Flow over Baffle Blocks and End Sills. Journal of Hydraulic Research, 18(3), 227–241. doi:10.1080/00221688009499549.

Zaffar, M. W., Hassan, I., Ali, Z., Sarwar, K., Hassan, M., Mustafa, M. T., & Waris, F. A. (2023). Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater. AQUA — Water Infrastructure, Ecosystems and Society, 72(11), 2081–2108. doi:10.2166/aqua.2023.261.

Abela, C. M. (2013). Stainless Steel Armor Plate Design for Protecting Supercavitating Baffle Blocks against Debris Impacts in High-Velocity Stilling Basins. Practice Periodical on Structural Design and Construction, 18(3), 177–186. doi:10.1061/(asce)sc.1943-5576.0000153.

Steele, R. B. (1926). Variation in the Latin Dactylic Hexameter. Philological Quarterly, 5, 212.

Steele, I. C., & Monroe, R. A. (1929). Baffle-pier experiments on models of Pit River Dams. Transactions of the American Society of Civil Engineers, 93(1), 451-480. doi:10.1061/TACEAT.0004087.

Ehrenberger, R. (1930). A new velocity formula for artificial channels with strong inclinations (shot channels) and calculation of the self-aeration of the water. Hydrographic Central Office in the Federal Ministry of Agriculture and Forestry, Wasserwirtschaft 23(17): 297–304.

Stevens, J.C. (1937): Scour Prevention below Bonneville Dam. Engineering News-Record, 118, 61–65.

Zhou, Q., & Yin, C. (2011). The baffle block effect of fluctuating pressure in hydraulic jump with low Froude number. 2011 International Conference on Multimedia Technology, 1290–1293. doi:10.1109/icmt.2011.6003131.

Djunur, L. H. (2023). Hydraulic planning of spillway structures. Unismuh Pers Makassar, Makassar. Indonesia. (In Indonesian).

Pandey, R., Kumar, M., & Saini, J. S. (2023). Thermodynamic performance evaluation of an indoor designed solar air heater duct equipped with V-down baffle blocks having racetrack-shaped staggered openings of varying aspect ratio–an experimental study. International Journal of Green Energy, 20(6), 656-676. doi:10.1080/15435075.2022.2083916.

Alwan, I., & Azzubaidi, R. (2022). Control of Velocity Profiles by using Baffle Blocks in Open Canals. Journal of Water Resources and Geosciences, 1(1), 86-101.

Abbas, A., Alwash, H., & Mahmood, A. (2018). Effect of baffle block configurations on characteristics of hydraulic jump in adverse stilling basins. MATEC Web of Conferences, 162, 3005. doi:10.1051/matecconf/201816203005.

Abdelhaleem, F. S. F. (2013). Effect of semi-circular baffle blocks on local scour downstream clear-overfall weirs. Ain Shams Engineering Journal, 4(4), 675–684. doi:10.1016/j.asej.2013.03.003.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Lutfi Hair Djunur, Muhammad Saleh Pallu, Riswal Karamma, Bambang Bakri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message