The Behavior of Enlarged Base Pile Under Compression and Uplift Loading in Partially Saturated Sand
Downloads
Doi: 10.28991/CEJ-2024-010-10-08
Full Text: PDF
[2] Dickin, E. A., & Leung, C. F. (1992). The influence of foundation geometry on the uplift behaviour of piles with enlarged bases. Canadian Geotechnical Journal, 29(3), 498–505. doi:10.1139/t92-054.
[3] Kiriyama, T., Zhou, Y., & Asaka, Y. (2024). Estimation of belled pile uplift resistance in dense sand based on centrifugal experiments. Japanese Geotechnical Society Special Publication, 10(48), 1780–1785. doi:10.3208/jgssp.v10.os-37-01.
[4] Al-Mosawe, M. J., Al-Shakarchi, Y. J., & Al-Taie, S. M. (2007). Embedded in Sandy Soils With Cavities. Journal of Engineering, 13(01), 1166–1186. doi:10.31026/j.eng.2007.01.03.
[5] Jebur, M. M., Ahmed, M. D., & Karkush, M. O. (2020). Numerical Analysis of Under-Reamed Pile Subjected to Dynamic Loading in Sandy Soil. IOP Conference Series: Materials Science and Engineering, 671(1), 12084. doi:10.1088/1757-899X/671/1/012084.
[6] Rashid Al-Qayssi, M., Faik Al-Wakel, S., & Khairalla Abdlazez Kando, A. (2018). Experimental Study of Model Piled Raft Foundation Embedded Within Partially Saturated Cohesionless Soils. Journal of Engineering and Sustainable Development, 2018(03), 62–75. doi:10.31272/jeasd.2018.3.6.
[7] Mahmood, M. R., Al-Wakel, S. F. A., & Hani, A. A. (2017). Experimental and Numerical Analysis of Piled Raft Foundation Embedded within Partially Saturated Soil. Engineering and Technology Journal, 35(2A), 97–105. doi:10.30684/etj.35.2a.1.
[8] Milovic, D. M., & Todorovic, T. (1985). Stresses and Displacements in an Anisotropic Soil Produced By a Ring Foundation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24(3), 821–827. doi:10.1016/0148-9062(87)90757-1.
[9] Broms, B. B. (1963). Allowable Bearing Capacity of Initially Bent Piles. Journal of the Soil Mechanics and Foundations Division, 89(5), 73–90. doi:10.1061/jsfeaq.0000559.
[10] Oloo, S. Y., Fredlund, D. G., & Gan, J. K. M. (1997). Bearing capacity of unpaved roads. Canadian Geotechnical Journal, 34(3), 398–407. doi:10.1139/t96-084.
[11] Vanapalli, S. K., & Mohamed, F. M. O. (2007). Bearing Capacity of Model Footings in Unsaturated Soils. Experimental Unsaturated Soil Mechanics, 483–493. doi:10.1007/3-540-69873-6_48.
[12] Oh, W. T., Vanapalli, S. K., & Puppala, A. J. (2009). Semi-empirical model for the prediction of modulus of elasticity for unsaturated soils. Canadian Geotechnical Journal, 46(8), 903–914. doi:10.1139/T09-030.
[13] Taylan, Z. N., & Vanapalli, S. K. (2012). Estimation of the Shaft Capacity of Single Piles Using the Conventional and Modified β Method. Unsaturated Soils: Research and Applications, 255–262. doi:10.1007/978-3-642-31343-1_32.
[14] ASTM D854-23. (2023). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-23.
[15] Ravindran, S., & Gratchev, I. (2022). Effect of Water Content on Apparent Cohesion of Soils from Landslide Sites. Geotechnics, 2(2), 385–394. doi:10.3390/geotechnics2020017.
[16] ASTM D4253. (2019). Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. ASTM International, Pennsylvania, United States. doi:10.1520/D4253-16E01.
[17] ASTM D4254-16. (2016). Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. ASTM International, Pennsylvania, United States. doi:10.1520/D4254-16.
[18] ASTM D3080-04. (2011). Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions ASTM International, Pennsylvania, United States. doi:10.1520/D3080-04.
[19] Ridley, A. (2015). Soil suction ” what it is and how to successfully measure it. Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, 27–46. doi:10.36487/acg_rep/1508_0.2_ridley.
[20] Li, X. (2008). Laboratory studies on the bearing capacity of unsaturated sands. PhD Thesis, University of Ottawa, Ottawa, Canada.
[21] Vanapalli, S. K., Sun, R., & Li, X. (2011). Bearing capacity of an unsaturated sand from model footing tests. Unsaturated Soils - Proceedings of the 5th International Conference on Unsaturated Soils, 2, 1217–1222. doi:10.1201/b10526-189.
[22] Fredlund, D. G., Sheng, D., & Zhao, J. (2011). Estimation of soil suction from the soil-water characteristic curve. Canadian Geotechnical Journal, 48(2), 186–198. doi:10.1139/T10-060.
[23] Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. doi:10.1139/t94-061.
[24] van Genuchten, M. T. (1980). A Closed"form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x.
[25] Leong, E. C., & Rahardjo, H. (1997). Permeability Functions for Unsaturated Soils. Journal of Geotechnical and Geoenvironmental Engineering, 123(12), 1118–1126. doi:10.1061/(asce)1090-0241(1997)123:12(1118).
[26] Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172766.
[27] Fattah, M. Y., Ahmed, M. D., & Mohammed, H. A. (2023). Behavior of Partially Saturated Cohesive Soil under Strip Footing. Journal of Engineering, 19(3), 298–311. doi:10.31026/j.eng.2013.03.02.
[28] Abood, A. S., Fattah, M. Y., & Al-Adili, A. (2023). Assessment of shear strength characteristics of the unsaturated gypseous soil at various saturation degrees. Cogent Engineering, 10(2), 2283303. doi:10.1080/23311916.2023.2283303.
[29] Fredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118280492.
[30] Ibrahim, A. A., & Karkush, M. O. (2023). The Efficiency of Belled Piles in Multi-Layers Soils Subjected to Axial Compression and Pullout Loads: Review. Journal of Engineering, 29(09), 166–183. doi:10.31026/j.eng.2023.09.12.
[31] Mahmood, M. R., Salim, N. M., & Al-Gezzy, A. A. (2021). Effect of Different Soil Saturation Conditions on the Ultimate Uplift Resistance of Helical Pile Model. E3S Web of Conferences, 318, 01012. doi:10.1051/e3sconf/202131801012.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
