Comparative Study of Different Classification Methods and Winner Takes All Approach
Abstract
Doi: 10.28991/CEJ-2024-010-10-016
Full Text: PDF
Keywords
References
Singh, M., & Tyagi, K. D. (2021). Pixel based classification for Landsat 8 OLI multispectral satellite images using deep learning neural network. Remote Sensing Applications: Society and Environment, 24, 100645. doi:10.1016/j.rsase.2021.100645.
Soliman, O. S., & Mahmoud, A. S. (2012). A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions. 2012 8th International Conference on Informatics and Systems (INFOS), 14-16 May, 2012, Giza, Egypt.
Abburu, S., & Babu Golla, S. (2015). Satellite Image Classification Methods and Techniques: A Review. International Journal of Computer Applications, 119(8), 20–25. doi:10.5120/21088-3779.
Briney, A. (2019). An Overview of Remote Sensing. ThoughtCo, New York, United States. Available online: https://www.thoughtco.com/an-overview-of-remote-sensing-1434624 (accessed on September 2024).
Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. doi:10.1080/01431160600746456.
Foody, G. M., Pal, M., Rocchini, D., Garzon-Lopez, C. X., & Bastin, L. (2016). The sensitivity of mapping methods to reference data quality: Training supervised image classifications with imperfect reference data. ISPRS International Journal of Geo-Information, 5(11), 199. doi:10.3390/ijgi5110199.
Shivakumar, B. R., & Rajashekararadhya, S. V. (2018). Investigation on land cover mapping capability of maximum likelihood classifier: A case study on North Canara, India. Procedia Computer Science, 143(579), 579–586. doi:10.1016/j.procs.2018.10.434.
Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749. doi:10.1080/01431160110040323.
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. doi:10.1080/01431161.2018.1433343.
Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011. doi:10.1080/01431160512331314083.
Mathur, A., & Foody, G. M. (2004). Land cover classification by support vector machine: Towards efficient training. International Geoscience and Remote Sensing Symposium (IGARSS), 2, 742–744. doi:10.1109/igarss.2004.1368508.
Salah, M. (2017). A survey of modern classification techniques in remote sensing for improved image classification. Journal of Geomatics, 11(1), 21.
D., S., Deepa, P., & K., V. (2017). Remote Sensing Satellite Image Processing Techniques for Image Classification: A Comprehensive Survey. International Journal of Computer Applications, 161(11), 24–37. doi:10.5120/ijca2017913306.
Sathya, P., & Baby-Deepa, V. (2017). Analysis of Supervised Image Classification Method for Satellite Images. International Journal of Computer Science Research, 5(2), 16–19.
Manohar, N., Pranav, M. A., Aksha, S., & Mytravarun, T. K. (2021). Classification of Satellite Images. Information and Communication Technology for Intelligent Systems. ICTIS 2020, Smart Innovation, Systems and Technologies, 195, Springer, Singapore. doi:10.1007/978-981-15-7078-0_70.
Murtaza, K. O., & Romshoo, S. A. (2014). Determining the suitability and accuracy of various statistical algorithms for satellite data classification. International Journal of Geomatics and Geosciences, 4(4), 585-599.
Altaei, M. S. M., & Mhaimeed, A. D. (2017). Satellite image classification using image encoding and artificial neural network. International Research Journal of Advanced Engineering and Science, 3(2), 149-154.
Neware, R., & Khan, A. (2018). Survey on Classification Techniques Used in Remote Sensing for Satellite Images. 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1860–1863. doi:10.1109/iceca.2018.8474881.
Pandya, A., & Science, C. (2015). Classification of Vegetation Area from Satellite. International Journal of Research in IT, Management and Engineering, 5(3), 48–56.
Vimala, R, Marimuthu, A., Venkateswaran, S., & Poongodi, R. (2020). Unsupervised ISODATA algorithm classification used in the landsat image for predicting the expansion of Salem urban, Tamil Nadu. Indian Journal of Science and Technology, 13(16), 1619–1629. doi:10.17485/ijst/v13i16.271.
Ouchra, H., Belangour, A., & Erraissi, A. (2023). Machine Learning Algorithms for Satellite Image Classification Using Google Earth Engine and Landsat Satellite Data: Morocco Case Study. IEEE Access, 11, 71127–71142. doi:10.1109/access.2023.3293828.
Yasin, H. E., & Kornel, C. (2024). Evaluating Satellite Image Classification: Exploring Methods and Techniques. Geographic Information Systems - Data Science Approach. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.1003196.
Ouchra, H., Belangour, A., & Erraissi, A. (2024). Supervised Machine Learning Algorithms for Land Cover Classification in Casablanca, Morocco. Ingenierie Des Systemes d’Information, 29(1), 377–387. doi:10.18280/isi.290137.
Nigar, A., Li, Y., Jat Baloch, M. Y., Alrefaei, A. F., & Almutairi, M. H. (2024). Comparison of machine and deep learning algorithms using Google Earth Engine and Python for land classifications. Frontiers in Environmental Science, 12, 10 3389 2024 1378443. doi:10.3389/fenvs.2024.1378443.
Ahmadi, K. (2024). Assessment of the Accuracy of Various Machine Learning Algorithms for Classifying Urban Areas through Google Earth Engine: A Case Study of Kabul City, Afghanistan. European Journal of Artificial Intelligence and Machine Learning, 3(3), 1–8. doi:10.24018/ejai.2024.3.3.40.
Vasquez, J., Acevedo-Barrios, R., Miranda-Castro, W., Guerrero, M., & Meneses-Ospina, L. (2024). Determining Changes in Mangrove Cover Using Remote Sensing with Landsat Images: a Review. Water, Air, & Soil Pollution, 235(1), 18. doi:10.1007/s11270-023-06788-6.
Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. doi:10.1109/ACCESS.2020.2988796.
Abinaya, V., & Poonkuntran, S. (2019). Classification of satellite image using Minimum Distance classification algorithm. International Journal of Computer Science and Engineering, 6(3), 15-18.
Ahmad, A., & Quegan, S. (2012). Analysis of maximum likelihood classification on multispectral data. Applied Mathematical Sciences, 6(129), 6425-6436.
Ibrahim, S. (2019). Comparative Analysis of Support Vector Machine (SVM) and Convolutional Neural Network (CNN) for White Blood Cells’ Classification. International Journal of Advanced Trends in Computer Science and Engineering, 8(1.3), 394–399. doi:10.30534/ijatcse/2019/6981.32019.
Sanghvi, K. (2020). Image Classification Techniques. Medium, San Francisco, United States. Available online: https://medium.com/analytics-vidhya/image-classification-techniques-83fd87011cac (accessed on September 2024).
Cortes, C. (1995). Support-Vector Networks. Machine Learning, 20, 273-297.
Kranjčić, N., Cetl, V., Matijević, H., & Markovinović, D. (2023). Comparing Different Machine Learning Options to Map Bark Beetle Infestations in Croatia. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-4/W7-2023, 83–88. doi:10.5194/isprs-archives-xlviii-4-w7-2023-83-2023.
Hasan, M., Ullah, S., Khan, M. J., & Khurshid, K. (2019). Comparative Analysis of SVM, ANN and CNN for Classifying Vegetation Species Using Hyperspectral Thermal Infrared Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 1861–1868. doi:10.5194/isprs-archives-xlii-2-w13-1861-2019.
Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., & Liu, S. (2012). Multiple classifier system for remote sensing image classification: A review. Sensors, 12(4), 4764–4792. doi:10.3390/s120404764.
Ustuner, M., Esetlili, M. T., Sanli, F. B., Abdikan, S., & Kurucu, Y. (2016). Comparison of crop classification methods for the sustainable agriculture management. Journal of Environmental Protection and Ecology, 17(2), 648–655.
Patil, M. B., Desai, C. G., & Umrikar, B. N. (2012). Image Classification Tool for Land Use / Land Cover Analysis: A Comparative Study of Maximum Likelihood. International Journal of Geology, Earth, and Environmental Sciences, 2(3), 189–196.
Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy Assessment of Land Use Change Analysis Using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conference Series: Earth and Environmental Science, 950(1), 012091. doi:10.1088/1755-1315/950/1/012091.
DOI: 10.28991/CEJ-2024-010-10-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Khaled Mahmoud Abdel Aziz, Loutfia Elsonbaty
This work is licensed under a Creative Commons Attribution 4.0 International License.