Comparative Study of Different Classification Methods and Winner Takes All Approach

Khaled Mahmoud Abdel Aziz, Loutfia Elsonbaty

Abstract


One of the most popular methods in remote sensing for gathering and evaluating satellite data is the classification of images. Several categories exist for image classification techniques, including supervised and unsupervised classification, pixel-based, object-based, and rule-based approaches. Each type of technique has pros and cons of its own. Choosing the method that produces the best results is one of the issues with image classification. The "best" model for classifying images relies on the particular task and the dataset used. The ideal classification technique is a crucial component in increasing classification accuracy. The strengths and drawbacks of various models vary, so selecting one that is appropriate for the job is critical. The main objective of this research is to analyze and compare the results of each classifier used, including ISODATA, K-mean, Maximum likelihood, Minimum distance, Support vector machine, and Neural network then integrate these different types of classification using the winners-takes-all classification approach in order to try to improve the results. The classified images were assessed, and both the overall accuracy and kappa coefficient were calculated and gave 79.50%, 73.89%, 77.05%, and 84.98%, 86.53%, 87.18%, and 88.69% for ISODATA, K-means, Minimum distance (MD), Maximum likelihood (MXL), Support vector machine (SVM), Neural network (NNT), and winner takes all (WTA), respectively. From the results, the Winner takes all (WTA) presented a superior in terms of the overall accuracy and kappa coefficient.

 

Doi: 10.28991/CEJ-2024-010-10-016

Full Text: PDF


Keywords


Classification; Kappa Coefficient; Error Matrix; Winner Takes All Classification.

References


Singh, M., & Tyagi, K. D. (2021). Pixel based classification for Landsat 8 OLI multispectral satellite images using deep learning neural network. Remote Sensing Applications: Society and Environment, 24, 100645. doi:10.1016/j.rsase.2021.100645.

Soliman, O. S., & Mahmoud, A. S. (2012). A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions. 2012 8th International Conference on Informatics and Systems (INFOS), 14-16 May, 2012, Giza, Egypt.

Abburu, S., & Babu Golla, S. (2015). Satellite Image Classification Methods and Techniques: A Review. International Journal of Computer Applications, 119(8), 20–25. doi:10.5120/21088-3779.

Briney, A. (2019). An Overview of Remote Sensing. ThoughtCo, New York, United States. Available online: https://www.thoughtco.com/an-overview-of-remote-sensing-1434624 (accessed on September 2024).

Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. doi:10.1080/01431160600746456.

Foody, G. M., Pal, M., Rocchini, D., Garzon-Lopez, C. X., & Bastin, L. (2016). The sensitivity of mapping methods to reference data quality: Training supervised image classifications with imperfect reference data. ISPRS International Journal of Geo-Information, 5(11), 199. doi:10.3390/ijgi5110199.

Shivakumar, B. R., & Rajashekararadhya, S. V. (2018). Investigation on land cover mapping capability of maximum likelihood classifier: A case study on North Canara, India. Procedia Computer Science, 143(579), 579–586. doi:10.1016/j.procs.2018.10.434.

Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749. doi:10.1080/01431160110040323.

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. doi:10.1080/01431161.2018.1433343.

Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011. doi:10.1080/01431160512331314083.

Mathur, A., & Foody, G. M. (2004). Land cover classification by support vector machine: Towards efficient training. International Geoscience and Remote Sensing Symposium (IGARSS), 2, 742–744. doi:10.1109/igarss.2004.1368508.

Salah, M. (2017). A survey of modern classification techniques in remote sensing for improved image classification. Journal of Geomatics, 11(1), 21.

D., S., Deepa, P., & K., V. (2017). Remote Sensing Satellite Image Processing Techniques for Image Classification: A Comprehensive Survey. International Journal of Computer Applications, 161(11), 24–37. doi:10.5120/ijca2017913306.

Sathya, P., & Baby-Deepa, V. (2017). Analysis of Supervised Image Classification Method for Satellite Images. International Journal of Computer Science Research, 5(2), 16–19.

Manohar, N., Pranav, M. A., Aksha, S., & Mytravarun, T. K. (2021). Classification of Satellite Images. Information and Communication Technology for Intelligent Systems. ICTIS 2020, Smart Innovation, Systems and Technologies, 195, Springer, Singapore. doi:10.1007/978-981-15-7078-0_70.

Murtaza, K. O., & Romshoo, S. A. (2014). Determining the suitability and accuracy of various statistical algorithms for satellite data classification. International Journal of Geomatics and Geosciences, 4(4), 585-599.

Altaei, M. S. M., & Mhaimeed, A. D. (2017). Satellite image classification using image encoding and artificial neural network. International Research Journal of Advanced Engineering and Science, 3(2), 149-154.

Neware, R., & Khan, A. (2018). Survey on Classification Techniques Used in Remote Sensing for Satellite Images. 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1860–1863. doi:10.1109/iceca.2018.8474881.

Pandya, A., & Science, C. (2015). Classification of Vegetation Area from Satellite. International Journal of Research in IT, Management and Engineering, 5(3), 48–56.

Vimala, R, Marimuthu, A., Venkateswaran, S., & Poongodi, R. (2020). Unsupervised ISODATA algorithm classification used in the landsat image for predicting the expansion of Salem urban, Tamil Nadu. Indian Journal of Science and Technology, 13(16), 1619–1629. doi:10.17485/ijst/v13i16.271.

Ouchra, H., Belangour, A., & Erraissi, A. (2023). Machine Learning Algorithms for Satellite Image Classification Using Google Earth Engine and Landsat Satellite Data: Morocco Case Study. IEEE Access, 11, 71127–71142. doi:10.1109/access.2023.3293828.

Yasin, H. E., & Kornel, C. (2024). Evaluating Satellite Image Classification: Exploring Methods and Techniques. Geographic Information Systems - Data Science Approach. IntechOpen, London, United Kingdom. doi:10.5772/intechopen.1003196.

Ouchra, H., Belangour, A., & Erraissi, A. (2024). Supervised Machine Learning Algorithms for Land Cover Classification in Casablanca, Morocco. Ingenierie Des Systemes d’Information, 29(1), 377–387. doi:10.18280/isi.290137.

Nigar, A., Li, Y., Jat Baloch, M. Y., Alrefaei, A. F., & Almutairi, M. H. (2024). Comparison of machine and deep learning algorithms using Google Earth Engine and Python for land classifications. Frontiers in Environmental Science, 12, 10 3389 2024 1378443. doi:10.3389/fenvs.2024.1378443.

Ahmadi, K. (2024). Assessment of the Accuracy of Various Machine Learning Algorithms for Classifying Urban Areas through Google Earth Engine: A Case Study of Kabul City, Afghanistan. European Journal of Artificial Intelligence and Machine Learning, 3(3), 1–8. doi:10.24018/ejai.2024.3.3.40.

Vasquez, J., Acevedo-Barrios, R., Miranda-Castro, W., Guerrero, M., & Meneses-Ospina, L. (2024). Determining Changes in Mangrove Cover Using Remote Sensing with Landsat Images: a Review. Water, Air, & Soil Pollution, 235(1), 18. doi:10.1007/s11270-023-06788-6.

Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. doi:10.1109/ACCESS.2020.2988796.

Abinaya, V., & Poonkuntran, S. (2019). Classification of satellite image using Minimum Distance classification algorithm. International Journal of Computer Science and Engineering, 6(3), 15-18.

Ahmad, A., & Quegan, S. (2012). Analysis of maximum likelihood classification on multispectral data. Applied Mathematical Sciences, 6(129), 6425-6436.

Ibrahim, S. (2019). Comparative Analysis of Support Vector Machine (SVM) and Convolutional Neural Network (CNN) for White Blood Cells’ Classification. International Journal of Advanced Trends in Computer Science and Engineering, 8(1.3), 394–399. doi:10.30534/ijatcse/2019/6981.32019.

Sanghvi, K. (2020). Image Classification Techniques. Medium, San Francisco, United States. Available online: https://medium.com/analytics-vidhya/image-classification-techniques-83fd87011cac (accessed on September 2024).

Cortes, C. (1995). Support-Vector Networks. Machine Learning, 20, 273-297.

Kranjčić, N., Cetl, V., Matijević, H., & Markovinović, D. (2023). Comparing Different Machine Learning Options to Map Bark Beetle Infestations in Croatia. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-4/W7-2023, 83–88. doi:10.5194/isprs-archives-xlviii-4-w7-2023-83-2023.

Hasan, M., Ullah, S., Khan, M. J., & Khurshid, K. (2019). Comparative Analysis of SVM, ANN and CNN for Classifying Vegetation Species Using Hyperspectral Thermal Infrared Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 1861–1868. doi:10.5194/isprs-archives-xlii-2-w13-1861-2019.

Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., & Liu, S. (2012). Multiple classifier system for remote sensing image classification: A review. Sensors, 12(4), 4764–4792. doi:10.3390/s120404764.

Ustuner, M., Esetlili, M. T., Sanli, F. B., Abdikan, S., & Kurucu, Y. (2016). Comparison of crop classification methods for the sustainable agriculture management. Journal of Environmental Protection and Ecology, 17(2), 648–655.

Patil, M. B., Desai, C. G., & Umrikar, B. N. (2012). Image Classification Tool for Land Use / Land Cover Analysis: A Comparative Study of Maximum Likelihood. International Journal of Geology, Earth, and Environmental Sciences, 2(3), 189–196.

Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy Assessment of Land Use Change Analysis Using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conference Series: Earth and Environmental Science, 950(1), 012091. doi:10.1088/1755-1315/950/1/012091.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Khaled Mahmoud Abdel Aziz, Loutfia Elsonbaty

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message