Increasing the Efficiency of Underground Block Leaching of Metal

Khalidilla Yussupov, Erbolat Aben, Sayfulmalik Myrzakhmetov, Dalelkhan Akhmetkanov, Nurzhigit Sarybayev

Abstract


The purpose of this study is to increase the efficiency of underground block metal leaching by increasing the metal content in the pregnant solution using the cavitation effect. To achieve this goal, it is proposed to process (cavitate) the leaching solution on the injector. The following research methods were used in this study: analysis of the current state of scientific and technical problems and research, laboratory work to establish the effect of the treated (cavitated) solution on the metal content in the pregnant solution, collection and processing of statistical data from laboratory work, analysis of research results, and preparation of conclusions. According to the results of laboratory research, leaching with a treated solution on an injector leads to an increase in the content of a useful component in the pregnant solution. The maximum increase in the metal content in the pregnant solution was achieved by processing the leaching solution for 5 min. The effectiveness of the solution over time after treatment was maintained for a long time (up to one month). Changes in the solution pressure did not affect the effectiveness of the treated leaching solution. The scientific novelty of this work consists of determining the dependence of the content of the useful component in the pregnant solution on the time of processing the leaching solution on the injector and the leaching time, which determines the optimal time for processing the solution on the injector to obtain the maximum metal content in the pregnant solution. The dependence of the content of the useful component in the solution on the pressure during leaching with untreated and treated solutions on the injector was obtained.

 

Doi: 10.28991/CEJ-2024-010-10-014

Full Text: PDF


Keywords


Block Leaching; Leaching Solution; Pregnant Solution; Processing of The Solution; Injector; Metal Content; Sulfuric Acid; Reagent; Pressure of the Solution.

References


Alimbaev, T., Mazhitova, Z., Beksultanova, C., & Tentigulkyzy, N. (2020). Activities of mining and metallurgical industry enterprises of the Republic of Kazakhstan: Environmental problems and possible solutions. E3S Web of Conferences, 175, 14019. doi:10.1051/e3sconf/202017514019.

Kenzhetaev1, Z. S., Kuandykov, T. A., Togizov, K. S., Abdraimova, M. R., & Nurbekova, М. A. (2022). Selection Of Rational Parameters for Opening and Drilling of Technological Wells Underground Uranium Leaching. Series of Geology and Technical Sciences, 3(453), 115–127. doi:10.32014/2022.2518-170x.184.

Yılmaz, H., & Sayın, Z. E. (2024). Effect of Sodium Cyanide and Jin Chan Chemicals on Gold Gain from Ore. Politeknik Dergisi, 27(4), 1387–1397. doi:10.2339/politeknik.1259655. (In Turkish).

Kolesnikov, A. S., Zhakipbaev, B. Y., Zhanikulov, N. N., Kolesnikova, O. G., Аkhmetova, K., Kuraev, R. M., & Shal, A. L. (2021). Review of technogenic waste and methods of its processing for the purpose of complex utilization of tailings from the enrichment of non-ferrous metal ores as a component of the raw material mixture in the production of cement clinker. Rasayan Journal of Chemistry, 14(2), 997–1005. doi:10.31788/RJC.2021.1426229.

Solovyova, V. M., & Ilinova, A. A. (2021). Complex use of mineral raw materials: Formation of organizational and economic mechanism. E3S Web of Conferences, 266, 6012. doi:10.1051/e3sconf/202126606012.

Golik, V. I., & Marinin, M. A. (2022). Practice of underground leaching of uranium in blocks. Mining Informational and Analytical Bulletin, 6–1, 5–20. doi:10.25018/0236_1493_2022_61_0_5.

Karimi, M., Hosseini, S. M., & Azimi, E. (2023). A Review on the Heap Bioleaching of Copper from Low-Grade Fine Tailings. Journal of Geomine, 1(4), 150-158. doi:10.22077/jgm.2024.7398.1023.

Seksenova, N., Bykov, R., Mamyachenkov, S., Daumova, G., & Kozhakanova, M. (2021). Optimization of conditions for processing of lead–zinc ores enrichment tailings of East Kazakhstan. Metals, 11(11), 1802. doi:10.3390/met11111802.

Bai, Z., Zhao, X., Zhang, J., Wu, F., & Tang, Q. (2023). Optimisation of uranium–radium co-leaching from uranium ore. Journal of Radioanalytical and Nuclear Chemistry, 332(6), 1841–1845. doi:10.1007/s10967-023-08892-7.

Dosmukhamedov, N., Kaplan, V., Zholdasbay, E., Argyn, A., Kuldeyev, E., Koishina, G., & Tazhiev, Y. (2022). Chlorination Treatment for Gold Extraction from Refractory Gold-Copper-Arsenic-Bearing Concentrates. Sustainability (Switzerland), 14(17), 11019. doi:10.3390/su141711019.

Kenzhetaev, Z., Togizov, K., Abdraimova, M., & Nurbekova, M. (2022). Selecting the rational parameters for restoring filtration characteristics of ores during borehole mining of uranium deposits. Mining of Mineral Deposits, 16(3), 1–10. doi:10.33271/mining16.03.001.

Faris, N., Pownceby, M. I., Bruckard, W. J., & Chen, M. (2022). The Direct Leaching of Nickel Sulfide Flotation Concentrates – A Historic and State-of-the-Art Review Part III: Laboratory Investigations into Atmospheric Leach Processes. Mineral Processing and Extractive Metallurgy Review, 44(8), 533–553. doi:10.1080/08827508.2022.2098292.

Jaramillo, K., Gonzalez, M. C., & Vargas, T. (2019). Chloride leaching of mineral sulfides: alternative route for the treatment of refractory gold ores. The 11th International Seminar on Process Hydrometallurgy, 19-21 June, 2019, Santiago, Chile.

Kutliahmetov, A. N., Kulagin, A. A., Iskhakov, F. F., Rakhmatullina, I. R., Nizamutdinova, N. R., Shaidullina, G. F., & Safarova, V. I. (2020). Environmental impact assessment of gold underground leaching technology. IOP Conference Series: Materials Science and Engineering, 905(1), 12043. doi:10.1088/1757-899X/905/1/012043.

Sheng, G. (2023). Ecological Environment Protection and Restoration of Mines based on International Experience and Insights. Frontiers in Humanities and Social Sciences, 3(9), 59–64. doi:10.54691/fhss.v3i9.5634.

Asr, E. T., Kakaie, R., Ataei, M., & Tavakoli Mohammadi, M. R. (2019). A review of studies on sustainable development in mining life cycle. Journal of Cleaner Production, 229, 213–231. doi:10.1016/j.jclepro.2019.05.029.

Omarbekov, Y., & Yussupov, K. (2020). Improving the technology of uranium mining under the conditions of high groundwater pressure. Mining of Mineral Deposits, 14(3), 112–118. doi:10.33271/mining14.03.112.

Golik, V. I., Razorenov, Y. I., Dmitrak, Y. V., & Gabaraev, O. Z. (2020). Experience of Metal Leaching in Underground Blocks of Ore Deposits in the North Caucasus. Vestnik of Nosov Magnitogorsk State Technical University, 18(3), 13–24. doi:10.18503/1995-2732-2020-18-3-13-24.

Rakhmanberdiyev, A. G., Aben, Y. Kh., Nursagat, N. N., Nuraliyev, G. O., Markenbayev, Zh. D. & Yussupov, Kh. A. (2022). A method for increasing the uranium content in a productive solution during underground in-situ leaching. LLP "ORTALYK Mining Enterprise". A patent for a utility model KZ, No.7390 dated 05/16/2022. Bulletin number 20.

Yusupov, K. A., Rysbekov, K. B., Aben, K. K., & Bakhmagambetova, G. B. (2021). Increasing gold leaching efficiency with change of solution rheological properties. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2021(3), 14–18. doi:10.33271/nvngu/2021-3/014.

Lim, B., Alorro, R. D., Aylmore, M., & Grimsey, D. (2023). Complexation leaching of critical and strategic metals from nickel converter slag using organic acids. Minerals Engineering, 201, 108167. doi:10.1016/j.mineng.2023.108167.

Toktaruly, B., Bayeshov, A., Aben, Y., & Suleimenov, S. K. (2022). Effect of Process Solution Saturation with Oxygen on Uranium in-Situ Leaching Performance. Eurasian Mining, 38(2), 50–53. doi:10.17580/em.2022.02.12.

Ligotskiy, D. N., & Argimbaeva, K. V. (2024). The sectional formation technology of an anthropogenic deposit with its subsequent mining using a hydraulic pull shovel. Sustainable Development of Mountain Territories, 16(1), 111–121. doi:10.21177/1998-4502-2024-16-1-111-121.

Yussupov, K., Aben, E., Akhmetkanov, D., Aben, K., & Yussupova, S. (2023). Investigation of the solid oxidizer effect on the metal geotechnology efficiency. Mining of Mineral Deposits, 17(4), 12–17. doi:10.33271/mining17.04.012.

Karimova, L., Makasheva, G., Zakharyan, D., Malyshev, V., & Kharchenko, Y. (2024). Studies on Extraction of Copper from Sulfuric Acid Solution After Thermochemical Enrichment of Rough Concentrate. Acta Metallurgica Slovaca, 30(2), 64–71. doi:10.36547/ams.30.2.2020.

Aben, E., Yussupova, S., Akhmetkanov, D., Yelzhanov, E., & Sarybayev, N. (2024). Research into Uranium Characteristics and Content in a Pregnant Solution During Leaching with Oxygen Saturation. Civil Engineering Journal (Iran), 10(5), 1606–1615. doi:10.28991/CEJ-2024-010-05-016.

Yachmenova, L. A., Syrkov, A. G., & Kabirov, V. R. (2023). Features of obtaining surface-modified metals with minimal carbon footprint. Non-Ferrous Metals, 55(2), 33–40. doi:10.17580/nfm.2023.02.06.

Kumar, M., Lee, J. C., Kim, M. S., Jeong, J., & Yoo, K. (2014). Leaching of metals from waste printed circuit boards (WPCBs) using sulfuric and nitric acids. Environmental Engineering and Management Journal, 13(10), 2601–2607. doi:10.30638/eemj.2014.290.

Msumange, D. A., Yazıcı, E. Y., Celep, O., & Deveci, H. (2020). Investigation of the Amenability of a Copper-Rich Refractory Gold Ore to Cyanide Leaching. Scientific Mining Journal, 59(4), 225–234. doi:10.30797/madencilik.843761.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-014

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Khalidilla Abenovich Yussupov, Erbolat Aben, Sayfulmalik Serikbaevich Myrzakhmetov, Dalelkhan Kairatovich Akhmetkanov, Nurzhigit Omarovich Sarybayev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message