Optionally Reinforced Columns Under Simulated Seismic and Time Varying Axial Loads: Advanced HYLSER-2 Testing
Downloads
Doi: 10.28991/CEJ-2024-010-10-09
Full Text: PDF
[2] Di Ludovico, M., Verderame, G. M., Prota, A., Manfredi, G., & Cosenza, E. (2013). Experimental Behavior of Nonconforming RC Columns with Plain Bars under Constant Axial Load and Biaxial Bending. Journal of Structural Engineering, 139(6), 897–914. doi:10.1061/(asce)st.1943-541x.0000703.
[3] Qiu, F., Li, W., Pan, P., & Qian, J. (2002). Experimental tests on reinforced concrete columns under biaxial quasi-static loading. Engineering Structures, 24(4), 419–428. doi:10.1016/S0141-0296(01)00108-0.
[4] Raza, S., Menegon, S. J., Tsang, H. H., & Wilson, J. L. (2020). Force-displacement behavior of limited ductile high-strength RC columns under bidirectional earthquake actions. Engineering Structures, 208, 110278. doi:10.1016/j.engstruct.2020.110278.
[5] Rodrigues, H., Aríªde, A., Varum, H., & Costa, A. G. (2013). Experimental evaluation of rectangular reinforced concrete column behaviour under biaxial cyclic loading. Earthquake Engineering and Structural Dynamics, 42(2), 239–259. doi:10.1002/eqe.2205.
[6] Rodrigues, H., Varum, H., Aríªde, A., & Costa, A. (2012). A comparative analysis of energy dissipation and equivalent viscous damping of RC columns subjected to uniaxial and biaxial loading. Engineering Structures, 35, 149–164. doi:10.1016/j.engstruct.2011.11.014.
[7] Raza, S., Tsang, H. H., & Wilson, J. L. (2018). Unified models for post-peak failure drifts of normal- and high-strength RC columns. Magazine of Concrete Research, 70(21), 1081–1101. doi:10.1680/jmacr.17.00375.
[8] Raza, S., Menegon, S. J., Tsang, H.-H., & Wilson, J. L. (2020). Collapse Performance of Limited Ductile High-Strength RC Columns under Unidirectional Cyclic Actions. Journal of Structural Engineering, 146(10), 1943–541 0002772. doi:10.1061/(asce)st.1943-541x.0002772.
[9] Menegon, S. J., Wilson, J. L., Lam, N. T. K., & McBean, P. (2018). RC walls in Australia: seismic design and detailing to AS 1170.4 and AS 3600. Australian Journal of Structural Engineering, 19(1), 67–84. doi:10.1080/13287982.2017.1410309.
[10] Wilson, J. L., Wibowo, A., Lam, N. T. K., & Gad, E. F. (2015). Drift behaviour of lightly reinforced concrete columns and structural walls for seismic design applications. Australian Journal of Structural Engineering, 16(1), 62–74. doi:10.7158/S14-002.2015.16.1.
[11] He, R., Yang, Y., & Sneed, L. H. (2015). Seismic Repair of Reinforced Concrete Bridge Columns: Review of Research Findings. Journal of Bridge Engineering, 20(12), 4015015. doi:10.1061/(asce)be.1943-5592.0000760.
[12] Raza, S., Khan, M. K. I., Menegon, S. J., Tsang, H. H., & Wilson, J. L. (2019). Strengthening and repair of reinforced concrete columns by jacketing: State-of-the-art review. Sustainability (Switzerland), 11(11), 3208. doi:10.3390/su11113208.
[13] De Luca, A., Matta, F., & Nanni, A. (2009). Behavior of full-scale concrete columns internally reinforced with glass FRP bars under pure axial load. Composites & Polycon, 15-17 January 2009, Tampa, Unites States.
[14] Guri, Z., Kokalanov, G., Ristic, D. & Ristic, J. (2018). Modeling of Circular Columns with Ordinary and Composite Reinforcement. Proceedings of International Conference, Earthquake Engineering and Engineering Seismology, 13-15 June, 2018, Kraljevo, Serbia.
[15] Guri, Z., & Misini, M. (2021). Experimental and numerical study of circular columns reinforced with steel and glass FRP bars. Magazine of Concrete Research, 73(4), 163–173. doi:10.1680/jmacr.19.00003.
[16] ACI 440.1R-06. (2006). Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. American Concrete Institute (ACI), Michigan, United States.
[17] CAN/CSA-S806-02. (2002). Design and Construction of Building Components with Fibre Reinforced Polymers. Canadian Standards Association (CSA), Toronto, Canada.
[18] Deitz, D. H., Harik, I. E., & Gesund, H. (2003). Physical Properties of Glass Fiber Reinforced Polymer Rebars in Compression. Journal of Composites for Construction, 7(4), 363–366. doi:10.1061/(asce)1090-0268(2003)7:4(363).
[19] Tobbi, H., Farghaly, A. S., & Benmokrane, B. (2012). Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars. ACI Structural Journal, 109(4), 551–558. doi:10.14359/51683874.
[20] Hadi, M. N. S., Karim, H., & Sheikh, M. N. (2016). Experimental Investigations on Circular Concrete Columns Reinforced with GFRP Bars and Helices under Different Loading Conditions. Journal of Composites for Construction, 20(4), 04016009. doi:10.1061/(asce)cc.1943-5614.0000670.
[21] Nanni, A. (1993). Flexural Behavior and Design of RC Members Using FRP Reinforcement. Journal of Structural Engineering, 119(11), 3344–3359. doi:10.1061/(asce)0733-9445(1993)119:11(3344).
[22] Elchalakani, M., Ma, G., Aslani, F., & Duan, W. (2017). Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading. Magazine of Concrete Research, 69(17), 865–877. doi:10.1680/jmacr.16.00437.
[23] Weber, A. (2006). Advanced reinforcement technology with GFRP Rebar. Proceedings 2nd International fib Congress. 5-8 June, 2006, Naples, Italy.
[24] Alkhattabi, L., Ali, A. H., Mohamed, H. M., & Gouda, A. (2024). Strain Behavior of Short Concrete Columns Reinforced with GFRP Spirals. Buildings, 14(7), 2180. doi:10.3390/buildings14072180.
[25] Zhang, X., Zhou, Y., Liu, X., Zheng, Y., & Qi, Z. (2024). Study on Seismic Performance of RC Frame Structures Considering the Effect of Infilled Walls. Buildings, 14(7), 14. doi:10.3390/buildings14071907.
[26] Xu, Q., Qian, J., Zhang, Y., Tang, L., Man, D., Zhen, X., & Han, T. (2024). Analysis of Progressive Collapse Resistance in Precast Concrete Frame with a Novel Connection Method. Buildings, 14(6), 1814. doi:10.3390/buildings14061814.
[27] Kalogeropoulos, G., Tsonos, A. D., & Iakovidis, P. (2024). Hysteresis Behavior of RC Beam–Column Joints of Existing Substandard RC Structures Subjected to Seismic Loading–Experimental and Analytical Investigation. Buildings, 14(6), 1609. doi:10.3390/buildings14061609.
[28] Handhal, M. M., Abdulghani, A. W., & Al-Haydary, M. M. (2023). Structural Behavior of Steel Reinforced Concrete Joint Under Flexural Loads. Civil Engineering Journal (Iran), 9(3), 714–730. doi:10.28991/CEJ-2023-09-03-015.
[29] Zhou, Y., Liu, X., Zhang, X., & Guo, X. (2024). Investigation on Seismic Performance of Reinforced Concrete Frame Retrofitted by Carbon Fiber-Reinforced Polymer. Buildings, 14(6). doi:10.3390/buildings14061604.
[30] Hassooni, A. N., & Al-Zaidee, S. R. (2022). Rehabilitation of Composite Column Subjected to Axial Load. Civil Engineering Journal (Iran), 8(3), 595–611. doi:10.28991/CEJ-2022-08-03-013.
[31] Okada, T., & Seki, M. (1977). A simulation of earthquake response of reinforced concrete buildings. 6th World Conference on Earthquake Engineering, 10-14 January, 1977, New Delhi, India,
[32] Takanashi, K., Udagawa, K., & Tanaka, H. (1980). Pseudo-Dynamic Tests on a 2-Story Steel Frame By Computer-Load Test Apparatus Hybrid System. Proceedings 7th World Conference on Earthquake Engineering, Istanbul, 8-13 September, Istanbul, Turkey.
[33] Okada, T., Seki, M., & Park, Y. J. (1980). Simulation of Earthquake Response of Reinforced Concrete Building Frames to Bi-Directional Ground Motion by IIS Computer-Actuator on-Line System. Proceedings of the 7th World Conference on Earthquake Engineering, 8-13 September, Istanbul, Turkey.
[34] Yamada, Y., & Iemura, H. (1982). Hybrid Analysis on Earthquake Response of Deteriorating Hysteretic Structures. Proceedings of the Sino-American Symposium on Bridge and Structural Engineering, 13–19 September, 1982, Beijing, China.
[35] Ristic, D. (1988). Nonlinear behavior and stress-strain based modeling of reinforced concrete structures under earthquake induced bending and varying axial loads. Ph.D. Thesis, School of Civil Engineering, Kyoto University, Kyoto, Japan.
[36] Pang, L., Han, Z., Xiao, J., Liu, Z., Qu, W., & Dong, S. (2024). Bearing Capacity of Hybrid (Steel and GFRP) Reinforced Columns under Eccentric Loading: Theory and Experiment. Buildings, 14(8), 2472. doi:10.3390/buildings14082472.
[37] Hadhood, A., Gouda, M. G., Agamy, M. H., Mohamed, H. M., & Sherif, A. (2020). Torsion in concrete beams reinforced with GFRP spirals. Engineering Structures, 206, 110174. doi:10.1016/j.engstruct.2020.110174.
[38] Alsuhaibani, E., Alturki, M., Alogla, S. M., Alawad, O., Alkharisi, M. K., Bayoumi, E., & Aldukail, A. (2024). Compressive and Bonding Performance of GFRP-Reinforced Concrete Columns. Buildings, 14(4), 1071. doi:10.3390/buildings14041071.
[39] Guo, R., Zhang, H., Chen, K., Song, Y., Li, H., Ding, L., & Liu, Y. (2024). Seismic Performance Analysis of Concrete Columns Reinforced with Prestressed Wire Ropes Embedded in Polyurethane Cement Composites. Buildings, 14(4), 993. doi:10.3390/buildings14040993.
[40] Rhouma, M. Ben, Maazoun, A., Aminou, A., Belkassem, B., Vandenbruwane, I., Tysmans, T., & Lecompte, D. (2024). Blast Loading of Small-Scale Circular RC Columns Using an Explosive-Driven Shock Tube. Buildings, 14(4), 921. doi:10.3390/buildings14040921.
[41] Chang, G. A., & Mander, J. B. (1994). Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I-Evaluation of Seismic Capacity. Technical Report No. Nceer-94-0006.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
