Flexural Behaviour of Prestressed Post-Tension Voided Biaxial Slab Under Uniformly Distributed Load

Ali Ahmed Hegab, Magdy El-Sayed Kassem, Rasha T. S. Mabrouk

Abstract


This study examines the flexural behavior of prestressed post-tensioned voided biaxial slabs under uniformly distributed loads (UDL) to evaluate structural performance, quantify material efficiency, and validate finite element models. Four full-scale slabs—solid and voided, with and without post-tensioning (PT)—were experimentally tested under UDL using a multi-level steel beam system to simulate uniform loading. Parameters such as crack initiation, deflection, and failure modes were monitored. Nonlinear finite element analysis (FEA) in ANSYS, employing Solid65 and Link180 elements, replicated material behavior and boundary conditions. The results showed that PT-voided slabs retained 96% of PT-solid yield capacity while reducing concrete volume by 22%, achieving a 21% self-weight reduction. Post-tensioning enhanced stiffness by 21% compared to non-PT voided slabs and delayed crack initiation. FEA predictions closely matched experimental data, with ≤10% deviation in load-deflection responses and consistent crack patterns. The novelty lies in demonstrating that PT effectively mitigates stiffness reductions (6% vs. PT-solid) caused by cuboidal voids, enabling high-performance, lightweight designs. This integration of PT with voided systems offers a sustainable solution, reducing material usage by up to 22% while maintaining structural integrity, thereby advancing eco-efficient construction practices. Findings provide critical insights for optimizing voided slab applications in modern infrastructure.

 

Doi: 10.28991/CEJ-2025-011-05-09

Full Text: PDF


Keywords


Voided Slabs; Post Tension Slab; Prestress Concrete; ANSYS.

References


Mota, S. (2013). Innovative Structural Slab Practices – Voided Slabs. American Concrete Institute (ACI), Michigan, United States.

Cobiax Technologies. (2010). Cobiax Engineering Manual. Cobiax Technologies AG, Schaffhausen, Switzerland.

BubbleDeck Technology. (2008). BubbleDeck Voided Flat Slab Solutions - Technical Manual and Documents. BubbleDeck Technology, Farum, Denmark.

Daliform Group. (2022). U-Boot Beton - disposable formwork for two-way voided slabs in reinforced concrete cast on site. Daliform Group, Gorgo al Monticano, Italy.

Harding, P. (2004). BubbleDeck–Advanced structure engineering. BubbleDeck Technology, Farum, Denmark.

Jang, S., Melrose, M. D., & Sesil, D. A. (2016). Columbia Medical Centers Vertical Campus. Proceedings of the Architectural Institute of Korea Conference, 1479-1486.

Anusha, M., Surendra, H. J., Vinod, B. R., & Bhavya, S. (2022). Modelling using finite element analysis in the structural behavior of bubble deck slab. Materials Today: Proceedings, 66, 2397–2404. doi:10.1016/j.matpr.2022.06.337.

Khouzani, M. A, Zeynalian, M., Hashemi, M., Mostofinejad, D., & Farahbod, F. (2020). Study on shear behavior and capacity of biaxial ellipsoidal voided slabs. Structures, 27, 1075–1085. doi:10.1016/j.istruc.2020.07.017.

Sagadevan, R., & Rao, B. N. (2019). Effect of void former shapes on one-way flexural behaviour of biaxial hollow slabs. International Journal of Advanced Structural Engineering, 11(3), 297–307. doi:10.1007/s40091-019-0231-7.

Pawar, A. J., Patil, Y. D., Vesmawala, G. R., Dhake, P. D., & Nikam, J. S. (2024). Investigating the flexural behaviour of biaxial voided slab with varying size and spacing of cuboidal shaped void formers with innovative type of fixing reinforcement. Structures, 64, 106616. doi:10.1016/j.istruc.2024.106616.

Chung, J. H., Jung, H. S., & Choi, H. K. (2022). Flexural Strength and Stiffness of Donut-Type Voided Slab. Applied Sciences (Switzerland), 12(12), 5782. doi:10.3390/app12125782.

Bhamare, V.P., Jadhao, P.D., Pawar, A.J. (2019). Design and Experimental Study of Voided Slab with Proposed New Shape of Void Former. Smart Technologies for Energy, Environment and Sustainable Development. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. doi:10.1007/978-981-13-6148-7_51.

Khouzani, M. A., Zeynalian, M., Hashemi, M., Mostofinejad, D., Farahbod, F., & Shahadifar, M. (2021). A numerical study on flexural behavior of biaxial voided slabs containing steel cages. Journal of Building Engineering, 44, 103382. doi:10.1016/j.jobe.2021.103382.

Vinod Kumar, M., & Hamza, T. A. (2020). Finite element analysis on effect of different ball spacing in bubble deck lightweight concrete slab. IOP Conference Series: Materials Science and Engineering, 872(1), 12124. doi:10.1088/1757-899X/872/1/012124.

Sagadevan, R., & Rao, B. N. (2020). Flexural Behavior of Reinforced Concrete Biaxial Voided Square Slabs. ACI Structural Journal, 117(5), 3–14. doi:10.14359/51724664.

Pawar, A. J., Mathew, N. S., Dhake, P. D., & Patil, Y. D. (2022). Flexural behavior of Two-Way voided slab. Materials Today: Proceedings, 65, 1534–1545. doi:10.1016/j.matpr.2022.04.500.

Jain, N., Hussain, A. (2022). Numerical Analysis on Voided Slab with Different Reinforcement on ANSYS 2020R1. I) Advances in Construction Materials and Sustainable Environment. Lecture Notes in Civil Engineering, 196, Springer, Singapore. doi:10.1007/978-981-16-6557-8_41.

Sagadevan, R., & Rao, B. N. (2021). Experimental and analytical investigations on two-way flexural capacity of biaxial voided slab. Structures, 81, 233–247. doi:10.1007/978-981-15-5235-9_18.

Jain, N., & Hussain, A. (2024). Analytical investigation and cost comparison on voided slab using ABAQUS. Asian Journal of Civil Engineering, 25(5), 4121–4132. doi:10.1007/s42107-024-01035-7.

Mahmoudian, A., Mahmoudi, M., Yekrangnia, M., Tajik, N., & Mohammadzadeh Taleshi, M. (2025). A novel machine learning-based approach to determine the reduction factor for punching shear strength capacity of voided concrete slabs. Discover Civil Engineering, 2(1). doi:10.1007/s44290-025-00181-4.

Chung, J. H., Bae, B. Il, Choi, H. K., Jung, H. S., & Choi, C. S. (2018). Evaluation of punching shear strength of voided slabs considering the effect of the ratio b0/d. Engineering Structures, 164, 70–81. doi:10.1016/j.engstruct.2018.02.085.

ACI 318-19. (2019). ACI 318-19 Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute (ACI), Michigan, United States. doi:10.14359/51716937.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Ali Ahmed Hegab, Magdy ElSayed Kassem, Rasha T. S. Mabrouk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message